两个向量的点乘和叉乘怎么算_“Aha!”,用几何思维理解矩阵的“逆”和向量的“点积”...

这是《机器学习中的数学基础》系列的第5篇。

人的一生总是需要许多“Aha!”(啊哈!)时刻,也就是让你顿悟的时刻。面对线性代数中复杂的概念和公式,如果我们从几何的角度去审视它们,就好比我们拥有了上帝视角,可以从大局上掌控它们,也可以更深入的理解它们的内涵。

先来看矩阵的逆。这里我们不会引入复杂的公式去介绍如何求矩阵的逆,我们要做的是,先深入理解它,然后再去计算它。

我们已经知道,给定一个矩阵A,让它作用于向量x(矩阵乘以向量),得到一个新向量b,这是一个线性变换。现在我们反过来想,如果有一个向量b,需要构造一个矩阵,让b变成x,这当然也是一个线性变换。那么很明显,后面这个变换是前面的反向操作。我们就把这个反向变换叫做矩阵A的逆。

说到这里,我们自然会有一个疑问,任何一个矩阵,都存在逆吗?

答案是否定的,有的矩阵是没有逆的。上一篇我们知道,矩阵的行列式表示经过线性变换后,基向量所围成面积的缩放倍数。那现在有一种情况是,矩阵的行列式为0,也就是说,经过线性变换后,基向量所围成的面积是0。这又是一种什么情况呢?假设原来的基向量是二维的,那么一个矩阵的行列式是0,它的线性变换的作用,就是把原来二维的空间压缩为一维的。换句话说,就是把原来的平面压缩成了一条直线。我们可以把空间压缩,但是没办法把空间扩大。也就是说,给你一个平面,你可以抛弃一些信息,把它压缩成一条直线。但是给你一条直线,你却没办法把它再还原成一个平面,因为你的信息有限。

因此,当一个矩阵的行列式为0时,相当于空间进行了压缩(降维),而且没有办法进行逆向操作(还原),此时该矩阵是没有逆的。

了解了逆的存在性,我们再来看下面这个式子:

2d24fe6ce3fe017530f901b97201c968.png

左边是矩阵A的逆,右边是矩阵A,二者相乘,代表什么呢?之前我们说过,两个矩阵相乘,表示依次进行2个线性变换。对于上式,我们看到,先是矩阵A进行了一次线性变换,然后A的逆又进行了一次变换,相当于变过来又变回去,等于没有进行任何变换。我们还知道,从基的角度看,矩阵其实就是线性变换后的基。那对于上式来说,没有进行变换说明什么呢?说明基还是原来的基,基也没有发生变换。那原来的基是啥呢?对于二维矩阵来说,原来的基就是向量(1,0)和向量(0,1)。那也就是说,我们可以用一个复合矩阵来代替上式两个矩阵的积,来表达什么也没有做的变换。这个矩阵就是[1,0;0,1],表示如下:

a1e2dccd409cd4d245fcd7422b364074.png

我们把类似矩阵[1,0;0,1]这种,对角线为1,其余元素为0的矩阵叫做单位矩阵,记作I。因此,上式又可以表示为:

1958d73f9b1bdf48fe2acdbe97795aea.png

单位矩阵的作用其实就是表达了什么也不做的一种线性变换。

  • 点积

接下来,我们来看向量的点积。先放个公式,看看两个向量的点积是啥意思:

e994f2be37892896429bc20ba3b4cf4e.png

一看式子就明白了,两个向量的点积,就是把各自对应的元素相乘,然后再求和。好像很容易理解,也很好计算。那我们再看下面这个矩阵:

760793405f056a2bd93c68cb711be294.png

这也算矩阵吗?是的,只不过它只有1行,是一个1*2的矩阵。它其实就是向量(a,b)“放倒”之后的样子,我们给它起个学名叫“转置”。然后,用矩阵[a b]再乘以向量(c,d),等于以矩阵的各列构造线性组合,其中权(系数)是向量的元素,即:

049267214424fbb1c36ab873214e962e.png

我们发现什么?我们发现它的结果和上面两个向量点积的结果一模一样啊。别忘了,矩阵是一种线性变换,它可以被看做是基的变换。那这个矩阵[a b]代表什么?它就表示变换后的基向量,只不过这里的基不再是向量,而是两个点。这又说明啥呢?这表明矩阵[a b]的线性变换,相当于把原来的一个向量变成了一个点,也就是说,相当于把一个向量投影到了数轴上。

好,现在假定我们有一个向量w=(x,y),想把它投影到一个数轴上,那投影的长度怎么算呢?这个投影作用的线性变换矩阵又是什么呢?我们画个图来解释下:

819951cd2da5e5e4787f91b3e6f1268b.png

图1

如上图,现在我们需要求一个矩阵,它所产生的线性变换是把向量w投影到数轴上,也就是投影到OP上。从基的角度看,我们要求的是原来的基向量投影到数轴上后,产生的新的基,如下图所示:

93dcfe468830a2072aad004a067a2f16.png

图2

如上图,ij分别是原来的基向量,我们要求的新的基就是它们投影到数轴上的长度OM、ON。那到底怎么求呢?我们先把数轴也用单位向量来表示:

66b2988e4438d299f2bc2c6e6accf0a9.png

图3

如图3所示,向量k是数轴上的单位向量。我们分别作向量i到数轴的投影和向量k到x轴的投影,很容易看出来,这俩投影是相等的(向量ijk的长度都是1,都是单位向量)。也就是说,向量i到数轴的投影,竟然就是向量k的横坐标。同理,向量j到数轴的投影,就是向量k的纵坐标(大家可以自行画图哈)。这表明,产生投影这种线性变换的矩阵,就是数轴上单位向量k的横纵坐标!也就是说,任意一个向量w点乘数轴上的单位向量k,就会得到向量w在数轴上的投影!用公式表示就是w·k。那如果我们是任意两个向量点乘呢?比如w·p,注意到,其中任意一个向量总可以写成单位向量的倍数形式。例如把P写成λkk是单位向量,λ是p的长度(单位向量的长度总是1)。因此,w·p可以表示为λ(w·k),λ是向量p的长度,w·kw在向量p方向上的投影。这也就是向量点积的几何意义。

我们再用图来说明一下:

48f6624f983e5e9c0e51dc872708ed6b.png

图4

任意给定两个向量wp,则w·p的几何意义就是wp方向上的投影ON的长度乘以p的长度。用公式表示就是:

fd593bfa7e1c65a9f2588551d33c679b.png

其中,α是两个向量的夹角。注意到,根据α的大小,向量的点积也有正负之分。当α<90°时,点积为正;当α>90°时,点积为负;当两个向量垂直时(α=90°),点积为0。

好了,这就是今天的全部内容。你“Aha!”了吗?

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值