语音识别维特比解码_人工智能、通信领域的解码算法对比:维特比和BeamSearch...

本文对比了人工智能领域中的维特比算法与通信领域的解码算法,分析了两者在复杂度和适用场景上的差异。在序列预测问题中,如分词、语音识别和机器翻译,维特比算法适用于小规模词汇,而机器翻译常采用BeamSearch作为近似解。通信解码通常使用维特比算法,因其在保证最优解的同时,复杂度相对适中。
摘要由CSDN通过智能技术生成

人工智能自然语言处理领域中,很多都能转换为序列的预测问题,比如

  • 分词算法可以转化为预测每个字的标签B(词开始位置)、M(词中间位置)、E(词结束位置)、S(单字作为词)
  • 语音识别、机器翻译、文本生成算法可以认为是预测每个位置的词语
  • 输入法里面的拼音转汉字等等

而数字通信领域,接收机侧做的工作,本质上也是二进制0、1序列的解码,可以看成是二进制序列的预测问题。

同为序列预测问题,为什么分词用维特比算法,机器翻译用定向搜索(BeamSearch)算法,而通信解码用维特比算法呢?本文会分析两大解码算法:维特比、BeamSearch的复杂度及其适用的场景。

a5615a6739d13ce31064eefd8ec08a02.png

人工智能领域 VS 通信领域

一些符号约定:

  • 词典大小: V (vocabulary size),
  • 序列长度: L (length)
  • 定向宽度: B (Beam Width)

暴力搜索: O(V^L)

最简单的方法,用暴力美学去穷举,遍历所有可能路径后,找到最优值。复杂度为O(V^L)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值