比较两条曲线相似度_【圆锥曲线】二次曲线方程与形状的关系

4764d099c0f6e86f19c2c350ad78eb84.png

锐腾君又来啦,这周双更是不是很意外很惊喜呀?

锐腾君的闲话群已经创好了,以及锐腾君的个人专栏也创好了。

(文末有小彩蛋不要错过哦)

锐腾君的数学杂谈​zhuanlan.zhihu.com
2bcf7b306da8058efb6891b7c482a63a.png

引言:

锐腾君一贯的作风是尽量地在初等范围内解释地通俗。但是有些地方好像不得不绕出来一下。

于是本文的部分内容可能涉及到一些超出高中范围的知识以及一些锐腾君以前提到过得知识。

我们默认读者已经知道:

1.二阶、三阶行列式及其计算方法
2.矩阵乘法的计算方法
3.矩阵乘法的性质:
,即

4.分块矩阵及其运算
5.过四点的二次曲线系
6.旋转变换及其矩阵表示(即 转轴公式

另有一些阅读建议:

对于没有高等代数基础且暂时不愿意接触的读者跳过“二次曲线的矩阵表示”、“正交变换与正交矩阵”、“特征值与特征向量”部分;建议了解不变量

(在“二次曲线的不变量之一
”部分)在旋转和平移变换下是不发生改变的。

对于基础较为薄弱的普通初高中生,建议只阅读“二次曲线方程的化简”、“二次曲线形状的判定”和文末“二次型的线性规划”部分。


二次曲线方程的化简

在本文,我们要对

王锐腾-return:【圆锥曲线】二次曲线系及其应用​zhuanlan.zhihu.com
e8717c5b9bcbfbc9ce1961d24dfc7de8.png

一文中的二次曲线方程略作修改。

二次曲线我们也可以表示为

为了使系数具有更好的对称性,我们将二次曲线的方程修改为

我们期望能够将(*)化为标准方程,从而可以判定(*)代表的二次曲线的形状

我们知道一次项影响的只是该曲线的中心所在的位置。所以我们忽略一次项,先考虑二次项的问题。

对于曲线

我们希望能够通过旋转来获得它的形状。将坐标轴顺时针旋转角度

代入,得

的系数是

的系数是

的系数是

我们期望交叉项的系数

也就是

化简以后,即

到这里,我们发现有两个不同的旋转角可以使我们消去交叉项。

没错!你仔细看看,这两个正切值的乘积是-1,这意味着啥?

两个角度限制在平角之内是差了个90°的。

所以你学过的标准方程才会有焦点在

轴和在
轴两种情形呀!

当然我们为了获得曲线的形状,只需要随便取其中一个角就好了

利用万能公式,我们知道

那么

的系数就化为了

同样,

的系数就化为了

二次曲线形状的判定

我们已经化简了方程

现在我们考察它的形状

同号且
,则方程表示椭圆

也就是

中有一个为
(这时候我们慢慢处理一次项),则方程表示抛物线

也就是

异号并且
,则方程表示双曲线

也就是

换句话说来说

的符号是判断二次曲线形状的一个判据,它对于圆锥曲线来讲,更是强有力的形状判据。

这时候一定有读者好奇:我如果不把(*)的交叉项系数调整为

,那样形状的判别式和二次方程的判别式
不是一致的么?

对于这个问题,锐腾君的回答是:

97a4e765c7f8d576405da60f481e5c11.png

那么我作系数的调整意义何在呢?


二次曲线方程的矩阵表示

注:以下内容需要一定的高等代数(线性代数)知识,如果读者暂时无法理解可以先跳过这一部分内容。

我们把系数调整到了“相同”,某种程度上就是为了“分解”的时候得到一些整齐的式子。

对于方程

我们可以将它写成

我们将中间的矩阵写成分块形式,取

则中间的矩阵(称为系数矩阵)

说明:本文中的
表示矩阵
的转置

可以发现

是个对称矩阵(即
)。

正交矩阵与正交变换

我们先给出几个定义:

定义1:如果有一个矩阵
,满足
(其中
表示
阶单位阵)则称
正交矩阵
定义2:如果两个矩阵
,满足存在正交矩阵
,使得
,则称
正交相似

本来我们对相似的定义是

(这个形式我们之后讲桥函数相似还会看到的)

但是我们注意到

,利用逆阵的唯一性,我们立刻得到

在正交矩阵的作用下发生的变换叫做正交变换(虽然我这个说法并不那么严谨)

正交变换有个很重要的性质是:两个向量在经过正交变换后,夹角不变,模长不变,进而内积不变!

还有一个重要性质就是:它将正交基变换为正交基!(这里可以认为正交基是指相互垂直的基向量)

换句话说来说,我们可以认为正交变换不改变曲线的形状!

例:我们熟知的旋转变换对应的矩阵
就是一个正交矩阵,旋转变换就是个正交变换

那么我们知道,不考虑对于不影响曲线形状的一次项,我们可以先置之不理。我们来考虑一下二次项系数构成的矩阵

,它正交相似于

换句话说,我们只要能够求出所有正交相似于

的矩阵,就可以得到离心率相同的二次曲线的二次项系数之间的关系。

特征值与特征向量

首先我们介绍一下矩阵的特征值与特征向量。

定义:对于一个矩阵
,如果存在一个实数
和一个与之配对的列向量
满足
。则称
的一对
特征值特征向量

我们给出一种计算特征值的方法。

有非零解,这代表
,于是我们只需要解一个关于
次方程就好了。

我们回来看一下正交变换

我们期望存在一个正交矩阵

,使得

首先告诉大家这样一个事实:相似的矩阵有相同的特征值(含重数)

下面我们来证明它:设

进而

所以它们的特征值相同。(

的特征值都是
的特征值,反过来也成立)

那么,相似于同一个

的所有矩阵
都拥有同样的特征值,且这两个特征值为

那么我们只要看

的两根。

这等价于

应为这个方程的两根,所以

二次曲线的不变量之一

在大学解析几何中,

这个量被称为二次曲线的不变量

可以顺带一提,不变量

,不变量
是系数矩阵)

当然本文主要是为了传达不变量

的一些重要性。

对于椭圆和双曲线而言,

对于椭圆,我们记绝对值较小的特征值

对于双曲线,我们记正的特征值为

最后一定可以通过旋转,平移化简到

那么这时,椭圆或双曲线的离心率

,这是关于
时的双射。

对于抛物线而言,二次项系数矩阵一定有一个特征值为

,取
,这时

因此,在

时,
一一对应。

换句话说,我们可以用

来表示一个二次曲线的形状。

回归一般情形,对于任何非退化二次曲线的二次项系数矩阵一定有两个特征根

对于

时,我们可以确定这个圆锥曲线的离心率,对于
时,有
,仍然可以确定圆锥曲线的离心率。

所以我们转而研究所有使得

相等的二次项系数矩阵有什么样的特点。

我们知道,两个特征值满足

,则

的解和
一一对应,也就是说,椭圆的离心率由
唯一确定。

时,

时,影响离心率的一个因素是
的符号。

首先,设

,则

,则
;若
,则

因此,双曲线的离心率可以由

的符号和
唯一确定。

总结一下这部分内容。

1.在保证了二次曲线不退化的情况下,

确定了二次曲线的类型。

为椭圆,
为抛物线,
为双曲线

2.在确定了曲线类型的情况下,

确定了二次曲线的离心率。

当曲线为双曲线的时候,


二次曲线退化的条件

二次曲线退化的条件为

我这里还是想留个坑。因为退化二次曲线还有具体再分类的。这就留到下一篇文章再继续吧哈哈哈。(这里偷偷预告一下,下一次讲射影几何)


过四点的抛物线问题

前段时间,笔者看到了一个较为有趣的想法。

例1:过给定四个点的抛物线是否有无穷条?如果不是,那么应该有几条?

首先,答案是至多两条。如果你知道抛物线与无穷远直线相切,那么这个结论是很自然的。

在上一篇文章中我已经提到过了二次曲线系。

那么我们假设经过点

的二次曲线系的基为

则过这四点的所有二次曲线应为

这条曲线是抛物线,所以

,也就是

所以,当

时,存在两条经过已知四点的抛物线型二次曲线;
时,有且仅有一条经过已知四点的抛物线型二次曲线;当
时,不存在经过已知四点的抛物线型二次曲线。

下面我们来探究四点满足什么样的关系时对应

的符号如何。

首先,对于二次曲线系构成的线性空间,基如何选取并不改变整个空间。所以自然不会改变

的符号(因为它对应了抛物线的条数)

我们从四点中选取两组两点连线来确定基。

首先选取直线

确定基。

将两式相乘,则

类似地,也可以用

确定基,得到

我们将

全部代换后,得到比例关系

因此,

也就是这四点两两相连的六条直线分成三组以后,我们选取其中两组。

分别将它们的斜率求出来,然后代入上式就可以判断

的符号。

但,各位读者请注意,我在上文中写到的是确定了几个抛物线型二次曲线,这是因为即便

,也不足以判断这是抛物线,我们还必须结合另外一个条件。就是曲线非退化,也就是

再往下的讨论就过于复杂,所以笔者在此也不再更加精细探讨。而事实上引入射影几何理论以后可以更加完美地去解决这一个问题。下一次笔者将从带来一些射影几何的介绍。


二次型的线性规划问题

首先我们本文并没有把二次曲线的所有情形都讨论完。但在面对考试的时候,适当的投机取巧,还是能够帮助我们迅速拿分的。

例2:已知
,求
的取值范围。

一般来讲,这种题目都是填空题。而且我出的数字也挺烂的,显然是根本就没有凑。

但是问题不大,并不影响我们硬肛刚。

算一下

,那么我们充分有理由相信它就是椭圆。

而且事实上,

,也说明了它就是个椭圆。

然后我们都知道图形了是不是就可以线性规划了?

只需要找到切线斜率是

的点就好了。

我们对方程求导,得

也就是

如果

,则
,代入原方程,立刻解得两交点为

分别代入

,这两个点一定分别对应最大值和最小值。算一下,结果就是


锐腾君这次再一次留了一个大坑。

不过,锐腾君从在破乎发第一篇文章到现在已经半年多了。这半年来,收获了十万的阅读量,一千的粉丝,以及一些一直关注我,向我提供帮助的朋友。也感谢我的解析几何老师——杨翎教授,在阅完上一篇文章后给我的肯定,有让我继续更新的动力。

也有相当一部分的人曾经问过锐腾为什么一直不出导数的文章,似乎压轴题天然就成了各位高考生的一个关注点。但是锐腾君至今为止并没有写过导数的文章,原因是,锐腾自认为我的分析学的很差,并没有能力向大家展示一些不一样的思想过程。或者说,锐腾在做分析的题目时,可能能力不一定有各位读者强。当然,这并不意味着锐腾会放弃分析,并且不努力学习分析。学数学的过程,就是痛快——“痛并快乐着”,你越“痛”反而越快乐。同样的,也希望各位读者,尤其是高三的读者不要因为导数是压轴题而只专注于导数。

与各位数学学习者共勉

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值