在前面的排序算法学习中,归并排序和快速排序就是用的分治法,分治法作为三大算法之一的,有非常多的应用例子。
分治法概念
将一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题----“分”
将最后子问题可以简单的直接求解----“治”
将所有子问题的解合并起来就是原问题打得解----“合”
分治法特征
该问题的规模缩小到一定的程度就可以容易地解决
该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
利用该问题分解出的子问题的解可以合并为该问题的解;
该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;
第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;、
第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。
第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
分治法例子:
一、对数组进行快速排序
'''
时间复杂度O(nlogn)
pivot枢纽,low和high为起点终点
'''
#划分分区(非就地划分)
def partition(nums=list):
pivot= nums[0] #挑选枢纽
lo = [x for x in nums[1:] if x < pivot] #所有小于pivot的元素
hi = [x for x in nums[1:] if x >= pivot] #所有大于pivot的元素
returnlo,pivot,hi#快速排序
def quick_sort(nums=list):#被分解的Nums小于1则解决了
if len(nums) <= 1:returnnums#分解
lo,pivot,hi =partition(nums)#递归(树),分治,合并
return quick_sort(lo) + [pivot] +quick_sort(hi)
lis= [7, 5, 0, 6, 3, 4, 1, 9, 8, 2]print(quick_sort(lis)) #[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
二、对数组进行归并排序
'''名字很多:归并排序/合并排序/二分排序
时间复杂度 O(logn)
递归
两个步骤:1.拆分 2.合并'''
def merge_sort(nums=list):#取mid以及左右两个数组
mid = len(nums)//2left_nums,right_nums=nums[:mid],nums[mid:]#递归分治
if len(left_nums) > 1:
left_nums=merge_sort(left_nums)if len(right_nums) > 1:
right_nums=merge_sort(right_nums)#合并
res =[]while left_nums and right_nums: #两个都不为空的时候
if left_nums[-1] >= right_nums[-1]: #尾部较大者
res.append(left_nums.pop())else:
res.append(right_nums.pop())
res.reverse()#倒序
return (left_nums or right_nums) + res #前面加上剩下的非空nums
lis= [7, 5, 0, 6, 3, 4, 1, 9, 8, 2]print(merge_sort(lis)) #[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
三、给定一个顺序表,编写一个求出其最大值的分治算法
#O(nlogn)
#基本子算法(内置算法)#虽然也可以处理大数组,这里用于解决分治问题规模小于2时候
def get_max(nums=list):returnmax(nums)#分治法
defsolve(nums):
n=len(nums)if n <= 2: #分治问题规模小于2时解决
returnget_max(nums)#分解(子问题规模为 n/2)
left_list, right_list = nums[:n//2], nums[n//2:]#递归(树),分治
left_max, right_max =solve(left_list), solve(right_list)#合并
returnget_max([left_max, right_max])if __name__ == "__main__":#测试数据
alist = [12,2,23,45,67,3,2,4,45,63,24,23]#求最大值
print(solve(alist)) #67
四、给定一个顺序表,判断某个元素是否在其中
#O(nlogn)#子问题算法(子问题规模为1)
defis_in_list(nums,key):if nums[0] ==key:print('Yes! %d in the nums' %key)else:print('Not found')#分治法
defsolve(nums,key):
n=len(nums)#N==1时解决问题
if n == 1:returnis_in_list(nums,key)#分解
left_list,right_list = nums[:n//2],nums[n//2:]#递归(树),分治,合并
res = solve(left_list,key) orsolve(right_list,key)returnresif __name__ == '__main__':#测试
lis = [12,2,23,45,67,3,2,4,45,63,24,23]#查找
print(solve(lis,45)) #YES~
print(solve(lis,5)) #NOT~
五、找出一组序列中的第 k 小的元素,要求线性时间
'''O(nlogn)
用快排的方法,选定pivot然后通过左右两个分组递归得出结果'''
#划分
def partition(nums=list):
pi=nums[0]
lo= [x for x in nums[1:] if x
hi= [x for x in nums[1:] if x >=pi]returnlo,pi,hi#查找第 k 小的元素
defsolve(nums,key):#分解
lo,pi,hi =partition(nums)
n=len(lo)#解决
if n ==key:returnpi#递归分治
elif n
else:returnsolve(lo,key)if __name__ == '__main__':
lis= [3, 4, 1, 6, 3, 7, 9, 13, 93, 0, 100, 1, 2, 2, 3, 3, 2]print(solve(lis,3))#2
print(solve(lis,10))#4