anaconda3+tensorflow+opencv3 视频人脸识别实战

3 篇文章 0 订阅
2 篇文章 0 订阅

因为项目上的需要,我需要去训练一个人脸识别的系统,但是机器视觉方向并不是我特别喜欢的方向,所以我特别急功求成,想尽快搭建一个人脸识别系统,其实在git上已经有很多相关论文还有已经训练好的模型,大家如果想去了解这方面的知识,这篇文章并不适合您看。当然,时间是必须去付出的,大家如果喜欢这方面的方向,就好好斟酌一下,神经网络现在应用的很广,推荐Tensorflow框架,实在是太简单方便搭建了。当然不要光只学框架,具体的原理一定要搞清楚,推荐Coursera-Andrew ng-MachineLearing课程,没看过就相当于没学过,这是经典,而且入门简单,好好学,好好吸收,原理就这样。

总结:

USB摄像头一个;

python  --  3.5.X

tensorflow

opencv  --  3.3.1

keras   --  2.0.X

sklearn  -- 0.19.0
 

一,安装Anaconda3

可以从清华的镜像库下载 https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ , anaconda2对应python 2X版本,anaconda3对应python 3X版本,我下载安装了Anaconda3-4.2.0。安装模式为谁都可以使用。

2.安装opencv3

打开开始找到Anaconda Prompt,并以管理员身份运行,其实就是个普通终端罢了。

输入以下命令,然后按下y即可。

conda install -c https://conda.anaconda.org/menpo opencv3

安装完成后我们可以用以下命令试试是否正常使用,没反应就是最好的反应了啊,能正常使用。

python

import cv2

3.安装tensorflow

同样地,打开开始找到Anaconda Prompt,并以管理员身份运行,输入以下命令,这时候使用的Tensorflow1.3.0

#Anaconda安装完成后,打开Anaconda Prompt,输入如下命令,创建Tensorflow虚拟环境。

    conda create -n tensorflow python=3.5

#进入Tensorflow虚拟环境

    activate tensorflow

退出Tensorflow虚拟环境

    deactivate tensorflow

安装Tensorflow

    pip install tensorflow

升级pip

    python -m pip install --upgrade pip

tensorflow安装相当费时,晚上下载速度感人,建议次日清晨早起下载安装。

安装过程中提示setuptools版本过低问题通过下列命令解决:

easy_install --user --upgrade setuptools

另外还会出现此类错误:“ERROR: Cannot uninstall 'Werkzeug'. It is a distutils installed project......” 吧啦吧啦。直接敲命令:

pip3 install --ignore-installed Werkzeug

费劲九牛二虎之力,终于安装成功,亲测可用。哦耶!完成tensorflow安装以后,同样可以输入以下命令来进行测试。

python
>>> import tensorflow
>>> quit()

 4,安装keras与scikit-learn

Keras是一个高层神经网络API,支持快速实验,能够把你的idea迅速转换为结果,如果有如下需求,可以优先选择Keras:

                a)简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性)

                b)支持CNN和RNN,或二者的结合

                c)无缝CPU和GPU切换
 

# list all packages installed
conda list 

# install specified version of package
conda install keras=2.0.8
conda install scikit-learn=0.19.0

用anaconda3就是这么方便,很多东西都集成好在一个地方,如果想卸载,其实很简单,直接把anaconda3卸载了,然后所有安装的东西都卸载了。就是这么好用。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值