acc定义代码 神经网络_神经网络的这几个坑,你都躲过了吗

本文列举了在使用神经网络解决问题时遇到的一些常见问题,包括缺少激活函数、激活函数选择不当、损失函数与激活函数不匹配、学习率设置、网络规模选择、训练测试集划分、数据特征维度不足以及性能评估指标的选择。这些问题可能导致模型不收敛或性能不佳,作者提供了相应的解决方案和建议,以帮助读者在实际应用中避免这些坑。
摘要由CSDN通过智能技术生成

因为AI这两年的火爆,大家拿着锤子到处找钉子,锤子当然也砸到了我头上,有很多做业务的同事尝试通过AI的方法解决需要一些很复杂的业务逻辑算法,同时需要很多参数组合才能搞定的问题。但因为都是非科班出身也没有系统学习,所以遇到不少问题,所以在这里一一列出来,并且持续更新,希望能够总结出一些经验,在后续的应用中能够跳过这些坑,把更多精力集中在数据和业务问题上。

关于神经网络为什么不工作,有一篇非常实用的指南,在训练过程中遇到问题可以首先参考这个指南。传送门。

问题1、没有激活函数,你是认真的吗

真的会发生这样的问题,尤其是直接用tensorflow写模型的时候。同事前几天写了段代码,搭了一个单隐层的模型来近似一个产品中的算法,但是怎么训练都不收敛,按说那个算法是复杂,但也没有必要整一个十好几层的模型来模拟,尝试了种种手段也还是没用,最后仔细一看模型代码,所有层都没有激活函数,相当于费很大劲写了个线性回归还要拟合出产品算法(/摊手)。所以对于大多数的应用,不涉及复杂的网络结构或初始化、loss函数的,就用keras吧,毕竟人生苦短。

当然,无激活函数,也就是单位激活函数,在一些场景下也会使用,通常这种使用能够带来减少训练参数的好处。所以除非是有意的设计来简化网络,否则激活函数可不能忘掉。

问题2、还是激活函数,选对了没有

很多指南上也都说过,一般情况下,分类器隐层的激活函数用relu,输出层用sigmoid或softmax就八九不离十了,但是这里也有坑。许多的例子中使用的数据集是离我们面临的问题比较远的,最

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值