威尔特拉斯定理_数学大师启示录维尔斯特拉斯.pdf

如果牛顿和莱布尼兹想到过连续函数不一定有导数 (而这却是

一般情形),那么微积分就决不会被创造出来。

——皮卡

分析算术化的过程开始了

19 世纪的数学,发生了三件意义深远的大事。

在30 年代,罗巴切夫斯基和鲍耶挣脱欧几里得几何的束缚,创

造了和它同样相容的几何——非欧几何。欧几里得几何的某些公理

在那里不再得到满足。它打破了欧几里得几何是先验的、惟一的几

何真理的神话,为更多新几何创立打开大门。

几乎同时,代数学也发生了类似的革命。以伽罗瓦、哈密顿、

格拉斯曼和凯莱为代表的数学家们创立了新的代数。普通代数里

的某些公理在那里不再适用。它为群、环、域、布尔代数、约当代

数和李代数等抽象代数的创立开辟道路。第三个具有重大意义的

事件是分析的算术化。

微积分自牛顿、莱布尼兹创立以来,获得空前的发展。但是,

它的许多概念还是含混不清的,它的基础仍旧薄弱。达朗贝尔首先

察觉到需要有一个极限理论来消除混乱;拉格朗日则在《解析函数

论》中作了有益的尝试;高斯比同时代数学家更早排除直观,对严

密性提出更高的要求;最后是柯西把问题大大推进。他的极限理论

对分析的发展和级数敛散性的判别都是必不可少的。但是,使数学

家最终下决心摒弃凭直观推理而寻求更可靠基础的,是由于德国数

学家卡尔·维尔斯特拉斯在1874 年发表的一个和直观相悖的惊人发

现:一条连续曲线却处处没有切线!

一个艰巨而漫长的分析算术化的过程开始了。

早年的波折

人们总以为,一

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 韦达定理数学中一个重要的定理,它定义了在高斯环上的多项式的欧几里得距离。它可以表示为:对于一个多项式f(x)在模p意义下的根,其在模p^k意义下的根的个数等于多项式f(x)在模p意义下的根的个数乘以(p^(k-1))。 ### 回答2: 韦达定理,也称为韦尔斯特拉斯定理或三角函数和定理,是解决三角恒等式问题的基本工具之一。该定理是由法国数学家韦達在19世纪初提出。 韦达定理指出,对于任意三角形ABC,若三边的长度分别为a、b和c,对应的内角分别为A、B和C,则有以下等式成立: a/sinA = b/sinB = c/sinC = 2R(其中R为该三角形的外接圆半径) 这个定理的重要性在于提供了三角形的边长和角度之间的关系,通过这个等式,我们可以根据已知条件求解未知量。韦达定理的适用范围较广,包括解决三角形的周长、角度、面积等问题。 韦达定理还有一个重要的推论,即正弦定理。根据正弦定理,我们可以得出: sinA/a = sinB/b = sinC/c 这个定理通过三角函数的正弦比例关系,进一步揭示了三角形的边长和角度之间的关系。 总结来说,韦达定理是三角学中重要的定理之一,通过它我们可以了解和运用三角形的边长和角度之间的关系,进而解决各种与三角形相关的问题。 ### 回答3: 韦达定理,也被称为韦达三角定理,是一个重要的数学定理,用于解决三角形的关系问题。它是由法国数学家韦达在第一次世界数学家大会上提出的,因而得名。 韦达定理可以用来描述三角形中边与角之间的关系。定理的表达方式如下: 在任意三角形ABC中,设a、b、c分别为三角形的边长,A、B、C为对应的内角,则有以下关系: a/sinA = b/sinB = c/sinC 这个等式表明,一个三角形的任意一条边与其对应的内角的正弦值,具有可比性,即可以用来建立三者之间的比例关系。 韦达定理的应用非常广泛。通过使用该定理,我们可以解决一些三角形相关的问题,例如: 1. 已知三角形两边和一个夹角,可以利用韦达定理求出第三边的长度。 2. 已知三个角的度数,可以利用韦达定理求出三个边的比例关系。 3. 已知一个角和其对边的长度,可以利用韦达定理求出另外两条边的长度。 总之,韦达定理是解决三角形相关问题时非常有用的工具,通过它我们可以建立角和边之间的关系,从而简化和解决各种三角形计算问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值