多元函数第六:连续函数(6)Bolzano-Weierstrass 波尔查诺-维尔斯特拉斯定理 聚点与列紧集

这篇博客介绍了数学中的波尔查诺-维尔斯特拉斯定理,探讨了连续函数、有界无限集合与聚点的概念。文章通过定义和例子阐述了聚点和孤立点的区别,并证明了有界无限集合必然存在至少一个聚点。此外,还推导出有界闭集的性质及其子集的聚点存在性。
摘要由CSDN通过智能技术生成

记得我上研究生时,老师给我科普的第一个数学概念就是聚点,从此踏上了数学的不归路。所以,重温这部分知识,还是难掩激动。与聚点相对应的概念,是孤立点。首先给出这两个概念的严格定义。

定义 给定 R n \mathbb{R}^n Rn上的点集 A A A,我们说 x ∈ R n x\in\mathbb{R}^n xRn A A A的一个孤立点,如果存在 x x x的邻域 U U U满足 U ∩ A = { x } U\cap A=\{x\} UA={ x}

定义 给定 R n \mathbb{R}^n Rn上的点集 A A A,我们说 x ∈ R n x\in\mathbb{R}^n xRn A A A的一个聚点点,如果对 x x x的任何邻域 U U U U ∩ A U\cap A UA包含无线多个点。

根据上面的定义, A A A的孤立点必然属于 A A A,但聚点不一定。事实上,可以很容易证明, A A A的聚点必然属于它的闭包。

命题 1 x x x A A A的聚点,当且仅当 x ∈ c l ( A ) x\in cl(A) xcl(A) x x x不是 A A A的孤立点。
证明略。

开区间 ( a , b ) (a, b) (a,b)的聚点集是闭区间 [ a , b ] [a, b] [a,b]

A = { 1 , 1 / 2 , 1 / 3 , . . . , 1 / n , . . . } A=\{1, 1/2, 1/3, ..., 1/n, ...\} A={ 1,1/2,1/3,...,1/n,...}。那么它的孤立点集是 A A A,聚点集是 { 0 } \{0\} { 0}

有理数集 Q \mathbb{Q} Q的聚点集是实数集 R \mathbb{R} R

命题 2 x 0 x_0 x0是集合 A A A的聚点的充要条件是存在点列 { x m } ⊆ A \{x_m\}\subseteq A { xm}A满足 x m ≠ x 0 x_m\neq x_0 xm=x0 lim ⁡ x m = x 0 \lim x_m =x_0 limxm=x0

证明. 充分性。设 { x m } ⊆ A \{x_m\}\subseteq A { xm}A是满足 x m ≠ x 0 x_m\neq x_0 xm=x0 lim ⁡ x m = x 0 \lim x_m =x_0 limxm=x

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值