实数系的基本定理_为什么极限理论的建立需要实数理论?

33495148819297b0a8f539ad3093af73.png

01柯西的极限思想的缺陷;

柯西是极限理论的集大成者,他使得整个微积分理论建立在极限理论的基础之上,使分析学开始一步步走向严格化。可以说,分析学的历史发展是以柯西为分界线的,而后面的数学大师们都可看作是他的门徒。

以严格化为目标,柯西对微积分的基本概念,如变量、函数、极限、连续性、导数、微分、收敛等等给出了明确的定义,并在此基础上重建和拓展了微积分的重要事实与定理。以下是柯西关于极限的定义:

当属于一个变量的相继大的值无限地趋近某个固定值时,如果最终固定值之差可以 随意地小,那么这个固定值就称为所有这些值的极限。

然而柯西的极限思想并不是没有缺陷的。极限理论在当时还只能说是“比较严格”,人们不久便发现柯西的理论实际上也存在漏洞。例如,他用了许多“无限趋近”、“想要多小就多小”等直觉描述的语言。

我们在这里不得不提到另外一位传奇的分析学大师——魏尔斯特拉斯

aced220ce501273a7c69cbd6889681f5.png
魏尔斯特拉斯(Weierstrass Karl Theodor Wilhelm,1815年10月31日-1897年2月19日)

02维尔斯特拉斯的严格化的极限理论的描述;

在数学史上,魏尔斯特拉斯关于分析严格化的贡献使他获得了“现代分析之父”的称号,这种严格化的突出表现是创造了一套

语言,用以重建分析体系。

魏尔斯特拉斯重新给出极限的定义:

,当且仅当对于任意的
,存在一个
,使得只要
,就有

他批评柯西等前人采用的“无限地趋近”等说法具有明显的运动学语义,代之以更精密的

表述,用这种方式重新定义了极限、连续、导数等分析基本概念,特别是通过引进以往被忽视的一致收敛性而消除了微积分中不断出现的各种异议和混乱。可以说,数学分析达到今天所具有的严密形式,本质上归功于魏尔斯特拉斯的工作。

极限概念的演变事实,也反映了一个情况,就是当时的数学家们对待几何直观更为慎重。一个例子,是当时人们对连续曲线的理解,人们以前曾认为连续曲线最多在某些点处不可导,但大部分点都是可导的。

高斯曾经称“数学是眼睛的科学”,但是要看清魏尔斯特拉斯摆在数学家们面前的这条曲线,单靠一双好眼睛是无论如何不够的。没错,魏尔斯特拉斯找到了这样一条曲线,它连续,但是处处不可导,真是天下之大奇,一举震惊了数学界。

魏尔斯特拉斯的例子使人们迫切感到彻底摆脱对几何直觉的依赖,重新认识考察分析基础的必要性。于是极限理论被严格化了。 这就是魏尔斯特拉斯新的极限定义,从静态、代数的角度重新理解极限,借用不等式来表达。

另一位德国数学家戴德金在年开始讲授微积分时说过的一段话,也反映出当时的数学家不满足于柯西的标准。

但是光有严格化的极限理论也是不够的,事实上,我们仍面临一个极限值是否存在的问题。柯西、魏尔斯特拉斯他们也似乎早已预感到了要着手解决这样一个问题。

03为什么极限理论的建立需要实数理论?

我们不妨开门见山,首先要问——我们的连续性是否需要实数?柯西列极限的存在性是否需要实数?零点定理的保证是否也需要实数?

如果数系不是连续的,是离散的,那么某些数列的极限是否存在就值得怀疑。

我们知道,现代的极限定义是用实数来定义一个数列的极限值的。但是对于有理柯西列,放在有理数域,它的极限值就不一定存在。

另外,我们考虑介值定理,最简单的就是零点存在定理。想象一下一条曲线穿过数轴,直观的判断必然会有零点存在吗?我们说,当然,怎么可能没有零点存在呢。不过,我们这里已经默认这样一条数轴是连续的,这里就要纠结一下,这里的数是什么,是单纯的有理数嘛?这时还没有实数。

因为有理数尽管是稠密的,但它是离散的,而且无理数还没有被严格定义。如果不严格定义实数,不是放在实数系去考虑,那么单纯借助极限理论我们无法得到这样美妙且直观的定理。

我们不禁要大声疾呼:

连续性需要实数的严格定义!

柯西列极限的存在需要实数的严格定义!

零点定理的保证也同样需要实数的严格定义!

微积分计算是在实数舞台上进行的,但直到19世纪中叶,对于什么是实数,竟还没有明确的定义。数学家们对实数系本身仍然是以直观的方式来理解的,他们相当随意地使用无理数如(

),而没有认真考察它们的确切意义和性质。为了进行计算,他们依靠了这样的假设:任何无理数都能用有理数来任意逼近,如
由于对实数系缺乏充分的理解,就不可能真正为微积分奠定牢固的基础。

魏尔斯特拉斯认为实数赋予我们极限与连续性等概念,从而成为全部分析的本源。要使分析严格化,首先就要使实数系本身严格化。

为此最可靠的办法是按照严密的推理将实数归结为整数(有理数),这样,分析的所有概念便可由整数导出,使以往的漏洞和缺陷都能得以填补,这就是所谓“分析算术化”纲领。

其实最早给实数下定义的数学家是柯西,不过他有一个BUG。他把实数定义为一个有理收敛数列的极限。可是这里不小心埋下了矛盾的种子。我们如果不详加考察,可能不会发现,这里存在着循环论证。怎么理解呢?如果把实数定义为极限,而极限本身又是由实数定义的,这里就相互论证了。好比用A来证明B,为了说明A的正确性,我们又用B来证明A。这就是循环论证。循环论证等于没证。

在1857年开始的解析函数论课程中,魏尔斯特拉斯才给出了第一个严格的实数定义,避免了柯西的循环论证。这个定义大意是先从自然数出发定义正有理数,然后通过无穷多个有理数的集合来定义实数,像大多数情况一样,魏尔斯特拉斯只是在课堂上作了讲授。1872年,有人曾建议他发表这一定义,但被魏尔斯特拉斯拒绝了。

这样讲,对于我们理解上,恐怕没有多大用处。我们不妨简单一点。直白的讲,魏尔斯特拉斯的办法就是把实数定义为单调递增的有理柯西序列,简单点实数就是有理序列。

或许有很多人可能不理解。数怎么是序列呢?怎么可以这样定义?!

如果我们考察数的发展历史,我们或许就不会这样惊讶了。早期,人们认为最本真的数是自然数,这时我们理解的数就是整数。接着数系得到了扩充产生了有理数,所有的数都可以看作一个分数,包括整数,也同样可以写成分数,这时我们对数的理解加深了一步。现在不过是到了实数系,所有的数都可以看成一个序列,这个才是对数更本质的认识。在实数域上,所有的数都排布在一条数轴上。当然到了复数域,数已经不再局限于一维数轴了,而是发展到了只有直角坐标系才能表达的地步。

1872年,戴德金、康托尔(G Cantor,1845-1918),梅雷(H.C.Meray)、和海涅(H.E.Heine)等人几乎同时发表了他们各自的实数理论,这些实数定义有其相似性,而其中戴德金和康托尔的实数构造方法正是我们现在通常所采用的。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值