实数系的基本定理_Rudin PMA Notes 1: 实数

1.

我们接触数学是从「数数」开始的。在小学和中学里,出现了

  • 数数;
  • 比较大小;
  • 自然数加法;
  • 「被减数」不小于「减数」的减法;
  • 自然数的乘法和带余除法;
  • 整数和整数的四则运算;
  • 有理数(分数)和有理数的四则运算。

在初中数学里,「实数」这个概念是这么引进的:

  • 从几何观点(正方形和正方体的边长)出发引进了平方根和立方根;
  • 引入了「无限不循环小数」和「无理数」两个概念;
  • 把「有理数」和「无理数」合起来称作「实数」;
  • 实数上的点与「数轴」上的点一一对应;对于数轴上的任意两个点,右边的点表示的实数总比左边的大。

2.

在《数学分析原理》(PMA[1])的第一章,我们重新认识实数。

Rudin 这本书并没有完全「从头开始」。它假设我们已经定义了有理数(定义1.4)以及有理数上的四则运算(1.13(b))。书里的第一段这么写:

A satisfactory discussion of the main concepts of analysis (such as convergence, continuity, differentiation, and integration) must be based on an accurately defined number concept. We shall not, however, enter into any discussion of the axioms that govern the arithmetic of the integers, but assume familiarity with the rational numbers.

这是大多数数学分析教材的做法。要严格定义自然数进而定义整数和有理数会涉及集合论的内容。Rudin绕开了这部分内容,只在第一章的开头给出了最基本的的集合论语言。

如果你想知道微积分是如何从定义自然数开始的,可以读Terence Tao的Analysis 第一卷[2]的前五章(第三章介绍了ZFC)。

3.

Ordered Sets (有序集) 和 Fields(域) 两节实际上总结了关于「实数」的三样东西:

  1. 大小关系和不等号(「序」结构);
  2. 加减乘除四则运算(定义1.12,「域」公理);
  3. 不等号与四则运算的关系(定义1.17,「有序域」)。

另外,Ordered Sets 一节给出了这章最重要的概念(1.8和1.10):"least-upper-bound property"(最小上界性质)[3],这是「极限」的理论基础。第2页中间的那个例子("We now examine this ...")说明了有理数集不具有"least-upper-bound property"。

第一章的核心定理就一条——定理 1.19:

There exists an ordered field R which has the least-upper-bound property. Moreover, R contains Q as a subfield.

另外应加上第21页的两句评论:

It is a fact which we will not prove here, that any two ordered fields with the least-upper-bound property are isomorphic. The first part of Theorem 1.19 therefore characterizes the real field
completely.

定理1.19 后面的所有与实数有关的论证,都以定理1.19作为逻辑起点。(实际上,有不少数学分析的教材把定理1.19作为一条公理来引入实数。)从前接触过的实数的模糊观念(比如说「实数与直线上的点1-1对应」,「实数分为有理数和无理数,其中无理数是无限不循环小数」等),应该暂时放到一边,仅作为理解实数的辅助手段,而不是证明的依据。作为练习,可以看看定理1.20的证明是如何使用定理1.19的。

另外,定理1.20后面的一句评论值得特别注意:定理1.20(a)叫「阿基米德性」;定理1.20(b)又叫「有理数在实数中的稠密性」。实数的这两条重要性质,尤其是第二条,在分析中经常用到。

定理1.19的证明在章末的附录。对于从没接触过微积分初学者而言,这个证明完全可以跳过去。(这是阅读数学的一种方法。)

4.

定理1.21定义了正实数的开

次方根运算。 这是数学里定义数学对象经常用到的方法:用某个「唯一存在」的性质去定义一个对象,但不给出这个对象的「具体」内容是什么。

这个定理的证明是应用定理1.19的一个极好的例子。

参考

  1. ^https://book.douban.com/subject/1652002/
  2. ^https://book.douban.com/subject/2864364/
  3. ^https://en.wikipedia.org/wiki/Least-upper-bound_property
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值