数学分析第三课(上下确界的概念)

Definition Let S S S be a set. An order on S S S is a relation, denote
by < < <, with the following two properties:

  1. If x ∈ S x\in S xS and y ∈ S y\in S yS then one and only one of the statements
    x < y , x = y , y < x x<y, x=y, y<x x<y,x=y,y<x is true.

  2. If x , y , z ∈ S x,y,z\in S x,y,zS, if x < y x<y x<y and y < x y<x y<x, then x < z x<z x<z.

Definition An ordered set is a set S S S in which an order is defined.

Definition Suppose S S S is an ordered set, E ⊂ S E\subset S ES, and E E E is
bounded above. Supose there exists an α ∈ S \alpha\in S αS with the following
properties:

  • α \alpha α is an upper bound of E E E

  • If γ < α \gamma<\alpha γ<α then γ \gamma γ is not an upper bound of E E E.

Then α \alpha α is called the least upper bound of E E E or the
supremum of E E E α = sup ⁡ E \alpha=\sup{E} α=supE

Definition Suppose S S S is an ordered set, E ⊂ S E\subset S ES, and E E E is
bounded blow. Suppose there exists an α ∈ S \alpha\in S αS with the following
properties:

  • α \alpha α is a lower bound of E E E

  • If γ > α \gamma>\alpha γ>α then γ \gamma γ is not a lower bound of E E E.

Then α \alpha α is called the greatest lower bound of E E E, or the
infimum of E E E

α = inf ⁡ E \alpha=\inf{E} α=infE

Definition An ordered set S S S is said to have the
least-upper-bound property if the following is true:
If E ⊂ S E\subset S ES, E E E is not empty, and E E E is bounded above, then
sup ⁡ E \sup{E} supE exists in S S S.
Theorem Suppose S S S is an ordered set with the least-upper-boudn
property, B ⊂ S B\subset S BS, B B B is not empty, and B B B is bounded below. Let
L L L be the set of all lower bounds of B B B. Then α = sup ⁡ L \alpha=\sup{L} α=supL
exists in S S S, and α = inf ⁡ B \alpha=\inf{B} α=infB

Proof.\

  • ∀ α ( a ∈ B ) \forall \alpha (a\in B) α(aB), a a a is an upper bound of L L L. Since B B B
    is bounded blow, L L Lis not empty. From the definition of a set with
    the least-upper-bound property, we get that L L L has a supremum value
    in S S S. We call it α \alpha α. α = sup ⁡ L \alpha=\sup{L} α=supL

    1. ∀ γ ( γ < α ) \forall\gamma (\gamma<\alpha) γ(γ<α), γ \gamma γ is not an upper bound
      of L L L, which means that γ \gamma γ is a lower bound of B B B and
      γ ∈ L \gamma\in L γL. In another word,
      ∀ γ ( γ < α ) → γ ∈ L \forall\gamma (\gamma<\alpha)\rightarrow \gamma\in L γ(γ<α)γL.

    2. ∀ β ( β > α ) \forall \beta (\beta>\alpha) β(β>α), β ∉ L \beta\notin L β/L, because
      α \alpha α is the least upper bound of L L L. β ∉ L \beta\notin L β/L means
      that β \beta β is not a lower bound of B B B. Hence,
      ∃ δ ( δ ∈ B ) → δ < β \exists \delta(\delta\in B)\rightarrow \delta<\beta δ(δB)δ<β.

    From the definition of the greatest lower bound, we have shown that
    α = inf ⁡ B \alpha=\inf{B} α=infB

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值