数学分析第四课(从有理数开始构建实数)

Here goes the most important theory, and it is a theorem about real
numbers
. This theorem explains the superiority of R \mathbb{R} R.
Theorem There exists an ordered field R \mathbb{R} R which has the
least-upper-bound property. Moreover, R \mathbb{R} R contains
Q \mathbb{Q} Q as a subfield.

Proof.
Our proof of this theorem is a contruction process of R \mathbb{R} R from
Q \mathbb{Q} Q. In order to do it, we need a new concept which called
cuts

  1. A cut is by definition, and set α ⊂ Q \alpha \subset \mathbb{Q} αQ with
    the following properties.

    1. α \alpha α is not empty, and α ≠ Q \alpha\ne \mathbb{Q} α=Q.

    2. if p ∈ α , q ∈ Q p\in \alpha, q\in \mathbb{Q} pα,qQ, and q < p q<p q<p, then
      q ∈ α q\in \alpha qα.

    3. if p ∈ α p\in \alpha pα, then p < r p<r p<r for some r ∈ α r\in \alpha rα.

    The real numbers R \mathbb{R} R is just all the α \alpha α that
    constructed from Q \mathbb{Q} Q.

  2. Define α < β \alpha<\beta α<β to mean: α \alpha α is a proper subset of
    β \beta β. It means that R \mathbb{R} R is an ordered set.

  3. The ordered set R \mathbb{R} R has the least-upper-bound
    property.
    Let A A A be a nonempty subset of R \mathbb{R} R, and assume that
    β ∈ R \beta\in \mathbb{R} βR is an upper bound of A A A. Definte γ \gamma γ to
    be the union of all α ∈ A \alpha\in A αA. To prove γ \gamma γ is a cut of
    Q \mathbb{Q} Q and γ \gamma γ is the least upper bound of A A A in
    R \mathbb{R} R, we need two steps.

    1. γ \gamma γ is a cut.

      1. γ ≠ ∅ \gamma\ne \emptyset γ= because A ≠ ∅ A\ne \emptyset A=.
        γ ≠ Q \gamma\ne \mathbb{Q} γ=Q because A A A is bounded by
        β ∈ R \beta\in \mathbb{R} βR.

      2. If q ∈ Q q\in \mathbb{Q} qQ, p ∈ γ p\in \gamma pγ, and q < p q<p q<p, then
        q ∈ γ q\in \gamma qγ. It is because that
        p ∈ γ → p ∈ α 1 p\in \gamma\rightarrow p\in \alpha_1 pγpα1 for some
        α 1 ∈ A \alpha_1\in A α1A. q < p → q ∈ α 1 q<p\rightarrow q\in \alpha_1 q<pqα1, hence
        q ∈ γ q\in \gamma qγ.

      3. For any p ∈ γ p\in \gamma pγ, we have p ∈ α , α ∈ A p\in \alpha, \alpha\in A pα,αA.
        Because α \alpha α is a cut of Q \mathbb{Q} Q, there exists
        r > p , r ∈ α r>p, r\in \alpha r>p,rα, which means that γ \gamma γ doesn’t have a
        largest number in it.

      Thus, γ \gamma γ is a cut of Q \mathbb{Q} Q.

    2. γ \gamma γ is a least upper bound of A A A.

      1. It is clear that α ⩽ γ \alpha\leqslant \gamma αγ for every
        α ∈ A \alpha\in A αA.

      2. ∀ δ ( δ < γ ) \forall \delta(\delta<\gamma) δ(δ<γ) means that there exists
        s ∈ γ , s ∉ δ s\in \gamma, s\notin \delta sγ,s/δ. s ∈ γ s\in \gamma sγ indicates that
        s ∈ α , α ∈ A s\in \alpha, \alpha\in A sα,αA. Hence δ < α \delta<\alpha δ<α, and
        δ \delta δ is not an upper bound of A A A. This gives the
        desired result: γ = sup ⁡ A \gamma=\sup{A} γ=supA

  4. If α ∈ R , β ∈ R \alpha\in \mathbb{R}, \beta\in \mathbb{R} αR,βR we define
    α + β \alpha+\beta α+β to be the set of all sums r + s r+s r+s, where
    r ∈ α , s ∈ β r\in \alpha, s\in \beta rα,sβ. We define
    0 ∗ = { q ∈ Q ∣ q < 0 } 0^{*}=\{q\in \mathbb{Q}|q<0\} 0={qQq<0}. We also define
    1 ∗ = { q ∈ Q ∣ q < 1 } 1^{*}=\{q\in \mathbb{Q}|q<1\} 1={qQq<1}. With these definitions, we can
    prove that R \mathbb{R} R is an ordered field. However, the whole proof
    of this is pretty trivial. If you want details of this proof, you
    can find it in rudin’s principle of mathematical analysis.

  5. What about subfield Q \mathbb{Q} Q? To answer this question, we have
    to definie a related set Q ∗ \mathbb{Q}^{*} Q. We associate with each
    r ∈ Q r\in \mathbb{Q} rQ the set r ∗ r^{*} r which consists of all
    p ∈ Q p\in \mathbb{Q} pQ such that p < r p<r p<r. It is clear that r ∗ r^{*} r is a
    cut. All these r ∗ r^{*} r form Q ∗ \mathbb{Q}^{*} Q. The ordered field
    Q \mathbb{Q} Q is isomorphic to the ordered field Q ∗ \mathbb{Q}^{*} Q.
    The proof of this is also trivial, and we won’t present it here.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值