环境要求
Main packages : python = 3.x,torch>=1.1,tensorboard >=1.14
Other packages : future,jupyter(optional)
具体操作
在 terminal 中输入如下命令进行依赖包安装
#更新pytorch
pip install tensorboard future jupyter
安装成功之后,再运行如下代码进行测试 :
import
运行成功之后,cd到当前目录可看到 /runs文件夹,terminal 运行 :
tensorboard --logdir=runs
按照提示在浏览器中打开http://localhost:6006,显示如下网页,恭喜你成功了
Tips :
- 若之前有安装 tensorboard 记得 upgrade tensorboard 至 v1.14,使用 pip install --upgrade 命令
- 网上有教程说需要安装 tb-nightly 但那样的话会导致 tensorboard 链接重复。报错 : ValueError: Duplicate plugins for name projector 解决办法为 :pip uninstall tb-nightly tensorboard pip install tensorboard
- 若下载过程较慢,可以考虑换源,推荐 清华源
- windows 会出现权限问题,按照提示加入 --user 即可解决
tensorboard+docker+(jupyter)
首先在terminal中输入如下代码启动docker:
再在jupyter notebook 中输入如下命令,只要端口无误就可成功显示 :
# %reload_ext tensorboard
%tensorboard --logdir
Tips :
- -p 8080:8080 -p 6006-6015:6006-6015 :将容器中端口6006-6015的10个端口映射到容器外的端口8080(此处修改为你的notebook实际的端口)。 -v "${PWD}:/workspace" : 将当前目录映射到容器中的/worksapce目录。-it you_image:tag : 你的镜像
- 第一次运行使用 %load_ext tensorboard 命令,之后运行的话使用 %reload_ext tensorboard
- 个人觉得没有必要放入jupyter中查看 tensorboard ,查看不是很方便,也容易出现端口占用的问题。如果不使用jupyter的话将6006端口映射为容器外任意未被占用的端口即可,在容器外打开ip:port就完事了