pytorch tensorboard_pytorch1.1+tensorboard使用指南

v2-7f00f55f80612db4b9cf2c60f105708c_1440w.jpg?source=172ae18b

环境要求

Main packages : python = 3.x,torch>=1.1,tensorboard >=1.14

Other packages : future,jupyter(optional)

具体操作

在 terminal 中输入如下命令进行依赖包安装

#更新pytorch
pip install tensorboard future jupyter 

安装成功之后,再运行如下代码进行测试 :

import 

运行成功之后,cd到当前目录可看到 /runs文件夹,terminal 运行 :

tensorboard --logdir=runs

按照提示在浏览器中打开http://localhost:6006,显示如下网页,恭喜你成功了

v2-3c0a0b14b5d9ea7b9291e935a3ca502e_b.jpg

Tips :

  1. 若之前有安装 tensorboard 记得 upgrade tensorboard 至 v1.14,使用 pip install --upgrade 命令
  2. 网上有教程说需要安装 tb-nightly 但那样的话会导致 tensorboard 链接重复。报错 : ValueError: Duplicate plugins for name projector 解决办法为 :pip uninstall tb-nightly tensorboard pip install tensorboard
  3. 若下载过程较慢,可以考虑换源,推荐 清华源
  4. windows 会出现权限问题,按照提示加入 --user 即可解决

tensorboard+docker+(jupyter)

首先在terminal中输入如下代码启动docker:

再在jupyter notebook 中输入如下命令,只要端口无误就可成功显示 :

# %reload_ext tensorboard
%tensorboard --logdir

Tips :

  1. -p 8080:8080 -p 6006-6015:6006-6015 :将容器中端口6006-6015的10个端口映射到容器外的端口8080(此处修改为你的notebook实际的端口)。 -v "${PWD}:/workspace" : 将当前目录映射到容器中的/worksapce目录。-it you_image:tag : 你的镜像
  2. 第一次运行使用 %load_ext tensorboard 命令,之后运行的话使用 %reload_ext tensorboard
  3. 个人觉得没有必要放入jupyter中查看 tensorboard ,查看不是很方便,也容易出现端口占用的问题。如果不使用jupyter的话将6006端口映射为容器外任意未被占用的端口即可,在容器外打开ip:port就完事了

参考链接:

torch.utils.tensorboard - PyTorch master documentation​pytorch.org ValueError: Duplicate plugins for name projector · Issue #22676 · pytorch/pytorch​github.com
v2-2b69048deeb1ce5914dc891d7aa149e7_ipico.jpg
Using TensorBoard with PyTorch 1.1.0​www.endtoend.ai
v2-f4a27723bd453aaf6089c0dc8ea4390b_180x120.jpg
%tensorboard magic doesn't work on docker · Issue #1947 · tensorflow/tensorboard​github.com
v2-491e587e4c490edbc19a607db2a982d9_ipico.jpg
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值