python最小二乘法拟合直线_Python 实现最小二乘法拟合直线

本文介绍了如何使用Python进行线性回归分析,特别是通过最小二乘法拟合直线。首先解释了线性回归的基本概念,然后展示了如何利用pandas处理数据,并通过最小二乘法计算回归系数。接着,利用sklearn库构建并评估线性回归模型,最后通过可视化展示模型效果。
摘要由CSDN通过智能技术生成

线性回归

线性回归是回归分析中最常见的一种建模方式。当因变量是连续的,自变量是连续的或者离散的,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

用方程 y = mx + c,其中 y为结果,x为特征,m为系数,c为误差 在数学中m为梯度c为截距。

最小二乘法

最小二乘法用于求目标函数的最优值,它通过最小化误差的平方和寻找匹配项所以又称为:最小平方法;这里将用最小二乘法用于求得线性回归的最优解

关于最小二乘法推导过程,详见这篇博客 最小二乘法

pandas 处理数据

导入 pandas 模块

import pandas as pd

import matplotlib.pyplot as plt

# jupyter 关于绘图的参数配置

plt.style.use('ggplot')

%config InlineBackend.figure_format = 'retina'

%matplotlib inline

获取表示长度和宽度关系的几组数据

数据不是很完美,接下来利用 pandas 处理下

修改列名

重置索引

df = df.rename(columns={'Unnamed: 0':'0'})

df = df.set_index(keys=['0'])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值