线性回归
线性回归是回归分析中最常见的一种建模方式。当因变量是连续的,自变量是连续的或者离散的,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
用方程 y = mx + c,其中 y为结果,x为特征,m为系数,c为误差 在数学中m为梯度c为截距。
最小二乘法
最小二乘法用于求目标函数的最优值,它通过最小化误差的平方和寻找匹配项所以又称为:最小平方法;这里将用最小二乘法用于求得线性回归的最优解
关于最小二乘法推导过程,详见这篇博客 最小二乘法
pandas 处理数据
导入 pandas 模块
import pandas as pd
import matplotlib.pyplot as plt
# jupyter 关于绘图的参数配置
plt.style.use('ggplot')
%config InlineBackend.figure_format = 'retina'
%matplotlib inline
获取表示长度和宽度关系的几组数据
数据不是很完美,接下来利用 pandas 处理下
修改列名
重置索引
df = df.rename(columns={'Unnamed: 0':'0'})
df = df.set_index(keys=['0'])

本文介绍了如何使用Python进行线性回归分析,特别是通过最小二乘法拟合直线。首先解释了线性回归的基本概念,然后展示了如何利用pandas处理数据,并通过最小二乘法计算回归系数。接着,利用sklearn库构建并评估线性回归模型,最后通过可视化展示模型效果。
最低0.47元/天 解锁文章

2万+

被折叠的 条评论
为什么被折叠?



