mllib nlp spark_Spark的MLlib和ML库的区别

机器学习库(MLlib)指南

MLlib是Spark的机器学习(ML)库。其目标是使实际的机器学习可扩展和容易。在高层次上,它提供了如下工具:

ML算法:通用学习算法,如分类,回归,聚类和协同过滤

特征提取,特征提取,转换,降维和选择

管道:用于构建,评估和调整ML管道的工具

持久性:保存和加载算法,模型和管道

实用程序:线性代数,统计,数据处理等

公告:基于DataFrame的API是主要的API

MLlib基于RDD的API现在处于维护模式。

从Spark 2.0开始,包中的基于RDD的API spark.mllib已进入维护模式。Spark的主要机器学习API现在是包中的基于DataFrame的API spark.ml。

有什么影响?

MLlib将仍然支持基于RDD的API spark.mllib并修复错误。

MLlib不会将新功能添加到基于RDD的API。

在Spark 2.x版本中,MLlib将向基于DataFrame的API添加功能,以便与基于RDD的API达成功能对等。

达到功能对等(大致估计为Spark 2.2)后,基于RDD的API将被弃用。

基于RDD的API预计将在Spark 3.0中被删除。

为什么MLlib切换到基于DataFrame的API?

DataFrames提供比RDD更友好的API。DataFrame的许多优点包括Spark数据源,SQL / DataFrame查询,Tungsten和Catalyst优化以及跨语言的统一API。

MLlib的基于DataFrame的API提供跨ML算法和跨多种语言的统一API。

数据框便于实际的ML管线,特别是功能转换。

什么是“Spark ML”?

“Spark ML”不是一个正式的名字,偶尔用于指代基于MLlib DataFrame的API。这主要是由于org.apache.spark.ml基于DataFrame的API所使用的Scala包名以及我们最初用来强调管道概念的“Spark ML Pipelines”术语。

MLlib是否被弃用?

编号MLlib包括基于RDD的API和基于DataFrame的API。基于RDD的API现在处于维护模式。

依赖

MLlib使用线性代数包Breeze,它依赖于 netlib-java进行优化的数值处理。如果本机库在运行时不可用,您将看到一条警告消息,而将使用纯JVM实现。

由于运行时专有二进制文件的授权问题,netlib-java默认情况下,我们不包含本地代理。要配置netlib-java/ Breeze以使用系统优化的二进制文件,请包括 com.github.fommil.netlib:all:1.1.2(或者构建Spark -Pnetlib-lgpl)作为项目的依赖项,并阅读netlib-java文档以获取平台的其他安装说明。

要在Python中使用MLlib,您将需要NumPy 1.4或更高版本。

推荐阅读:

http://blog.csdn.net/rlnLo2pNEfx9c/article/details/78692975

以上就是ml和mllib的主要异同点。下面是ml和mllib逻辑回归的例子,可以对比看一下, 虽然都是模型训练和预测,但是画风很不一样。

sparse_data = [

LabeledPoint(0.0, SparseVector(2, {0: 0.0})),

LabeledPoint(1.0, SparseVector(2, {1: 1.0})),

LabeledPoint(0.0, SparseVector(2, {0: 1.0})),

LabeledPoint(1.0, SparseVector(2, {1: 2.0}))

]

lrm = LogisticRegressionWithSGD.train(sc.parallelize(sparse_data), iterations=10)

lrm.predict(array([0.0, 1.0]))

lrm.predict(array([1.0, 0.0]))

lrm.predict(SparseVector(2, {1: 1.0}))

lrm.predict(SparseVector(2, {0: 1.0}))

import os, tempfile

path = tempfile.mkdtemp()

lrm.save(sc, path)

sameModel = LogisticRegressionModel.load(sc, path)

sameModel.predict(array([0.0, 1.0]))

sameModel.predict(SparseVector(2, {0: 1.0}))

from shutil import rmtree

try:

rmtree(path)

except:

pass

multi_class_data = [

LabeledPoint(0.0, [0.0, 1.0, 0.0]),

LabeledPoint(1.0, [1.0, 0.0, 0.0]),

LabeledPoint(2.0, [0.0, 0.0, 1.0])

]

data = sc.parallelize(multi_class_data)

mcm = LogisticRegressionWithLBFGS.train(data, iterations=10, numClasses=3)

mcm.predict([0.0, 0.5, 0.0])

mcm.predict([0.8, 0.0, 0.0])

mcm.predict([0.0, 0.0, 0.3])

ml中的逻辑回归的例子

from pyspark.sql import Row

from pyspark.ml.linalg import Vectors

bdf = sc.parallelize([

Row(label=1.0, weight=2.0, features=Vectors.dense(1.0)),

Row(label=0.0, weight=2.0, features=Vectors.sparse(1, [], []))]).toDF()

blor = LogisticRegression(maxIter=5, regParam=0.01, weightCol="weight")

blorModel = blor.fit(bdf)

blorModel.coefficients

DenseVector([5.5 ])

blorModel.intercept

-2.68

mdf = sc.parallelize([

Row(label=1.0, weight=2.0, features=Vectors.dense(1.0)),

Row(label=0.0, weight=2.0, features=Vectors.sparse(1, [], [])),

Row(label=2.0, weight=2.0, features=Vectors.dense(3.0))]).toDF()

mlor = LogisticRegression(maxIter=5, regParam=0.01, weightCol="weight",

family="multinomial")

mlorModel = mlor.fit(mdf)

print(mlorModel.coefficientMatrix)

DenseMatrix([[-2.3 ],

[ 0.2 ],

[ 2.1 ]])

mlorModel.interceptVector

DenseVector([2.0 , 0.8 , -2.8 ])

test0 = sc.parallelize([Row(features=Vectors.dense(-1.0))]).toDF()

result = blorModel.transform(test0).head()

result.prediction

0.0

result.probability

DenseVector([0.99 , 0.00 ])

result.rawPrediction

DenseVector([8.22 , -8.22 ])

test1 = sc.parallelize([Row(features=Vectors.sparse(1, [0], [1.0]))]).toDF()

blorModel.transform(test1).head().prediction

1.0

blor.setParams("vector")

Traceback (most recent call last):

TypeError: Method setParams forces keyword arguments.

lr_path = temp_path + "/lr"

blor.save(lr_path)

lr2 = LogisticRegression.load(lr_path)

lr2.getMaxIter()

model_path = temp_path + "/lr_model"

blorModel.save(model_path)

model2 = LogisticRegressionModel.load(model_path)

blorModel.coefficients[0] == model2.coefficients[0]

True

blorModel.intercept == model2.intercept

True

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值