matlab动态规划代码_干货|十分钟教你用动态规划算法解Travelling Salesman Problem(TSP)问题,附代码……...

     乍一看标题,大家是不是觉得“动态规划”这四个字组合在一起有点眼熟?似乎哪会儿学过来着……但是吧,细细一琢磨,又忘了它具体是什么、怎么用、用来解决哪些问题了。

    莫方,小编出现就是为了解决大家一切在学(zhuang)习(bi)上的需求的。动态规划忘了是吧,那今天小编就陪你好好回忆一下。

7d3ec25f15a9758f49a391558f682d90.gif

什么是TSP和动态规划

    简单来说,Travelling Salesman Problem (TSP) 是最基本的路线问题。它寻求的是旅行者由起点出发,通过所有给定的需求点后,再次返回起点所花费的最小路径成本,也叫旅行商问题、旅行推销员问题、货郎担问题……

    当然,如果你非要把TSP理解成“内容服务提供者”(Telematics Service Provider)小编也不会打你……计算机网络学得不错啊,四级过了吗?

    说完TSP问题,咱们再来聊聊什么是动态规划。

    动态规划算法(Dynamic Programming,简称DP)通常用于求解具有某种最优性质的问题,其基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后由这些子问题的解再得到原问题的解。

    看到这里想必你已经明白了,动态规划恰是一种求解TSP问题的好方法,具体如何求解,我们可以举例实操一下。

2e3afde38fc3c1272f74ebf8cbc0e110.gif

实例操作

    假设现在有四个城市,它们分别是0,1,2,3,他们之间往来的代价如下图所示:

5887064c322c07bd1b04066f5f4a2b26.png

    为了方便起见,我们把它化成二维表的形式:

44597f0a2d655388fdaccfeb764efec6.png

    好了这里要敲黑板划横线了!现在,我们要从城市0出发,期间1,2,3每个城市都必须经过并且只能经过一次,最后回到0,使得路上花费的代价最小。请问你要怎么走?

0dbd072b749a456e8b9e0870f6320721.png

     事实上,这是一个最基本的TSP问题,且构成最优子结构性质,所以可以使用动态规划求解,下面来验证一下此方法求解的可行性。

    设 s,s1,s2…s为满足题意的最短回路。假设从s到s1的路径已经确定,则问题转化为从s1到s的最短路径问题。而很显然,s1,s2…s一定可以构成一条最短路径,所以构成最优子结构性质,可以用动态规划求解。

    明确问题可解,那下一步就是列方程求解了。

c7802563b991be3bcf8153768d8d09e4.png

简单推导一下动态规划方程

    用 V’ 表示一个点的集合,假设从顶点 s 出发, d ( i , V’ ) 表示当前到达顶点 i,经过 V’ 集合中所有顶点一次的最小花费。

    ① 当 V’ 为仅包含起点的集合,也就是:

d ( s , { s } ) = 0 ;

    ② 其他情况,则对子问题求最优解。需在 V’ 这个城市集合中,尝试每一个城市结点,并求出最优解。

1663ddfbd0e90fcc22e7a3579db5966f.png

    ③ 最后的求解方式为:

7f9a2e578e254d3047daddb345d4059d.png

    其中 S 为包含所有点的集合。

    把公式一套,题就解了。是不是很简单?但是,小编还有更简单的方法。

    其实,绝大部分TSP问题都比例子中复杂许多,用程序求解是更好的选择。在这里小编给大家提供一种较为简单的方法,只要把动态规划算法原理掌握好了,代码自然就不难理解了。

7dc347d62d0a30d4938684afa8b57966.png  

用代码前,你需要做哪些准备?

94112e6c369f3835a74a9699c5d16ae5.png

理解状态压缩DP

   所谓状态压缩,就是利用二进制以及位运算来实现对于本来应该很大的数组的操作。而求解动态规划问题,很重要的一环就是状态的表示,一般来说,一个数组即可保存状态。但是有这样的一些题目,它们具有DP问题的特性,但是状态中所包含的信息过多,如果要用数组来保存状态的话需要四维以上的数组。于是,我们就需要通过状态压缩来保存状态,而使用状态压缩来保存状态的DP就叫做状态压缩DP。

    例题TSP的动态规划方程中,V’ 是一个集合,而对于集合的状态表示最简单的办法就是利用C++中STL里的set,但是这个时候就要考虑一个问题,在代码实现的时候,我们不能用一个集合去做一个数组的下标。自然而然,我们想到可以利用集合的特征值,但这个方法很复杂,而且不容易实现。

    小编在这里给大家普及一下位运算的知识。最简单的与(and),或 ( or ),非 ( not ), 大家都很熟悉,和逻辑电路是相通的。而对于异或 ( xor ), 则是很有趣的一种位运算,它的运算规则是相同为 0,不同为 1。例如: 

1 xor 1 = 0,0 xor 0 = 0,

1 xor 0 = 1,0 xor 1 = 1;

    它的运算满足交换律以及结合律。除此之外,xor 还有很多神奇的操作,有兴趣的同学可以自己去查阅。

    再复杂一点的有左移 ( shl ), 右移 ( shr ),相当于对于二进制数的位置移动。例如10001(2) shl 1,就是10001(2)左移一位,变成了100010(2),换算成十进制,相当于扩大了 2 倍,同理右移则是缩减两倍。那么对于任意的一个二进制数,左移 k 位就是乘 2k, 右移就是整除 2k 。

    |||| 小贴士:

在C++中,位运算操作符分别是:

与 &,或 |,非 ~,异或 ^,

左移 <<,右移 >>

   推到动态规划方程时,我们注意到 V’ 是一个数的集合,而且解决的问题规模比较小,于是可以用一个二进制数来存储这个集合。简单来说就是——如果城市 k 在集合 V’ 中,那么存储集合的变量 i 的第 k 位就为 1,否则为 0。由于有 n 个城市,所有的状态总数我们用 M 来表示,那么很明显:M = 2^n,而 0 到 2^n -1 的所有整数则构成了 V’ 的所有状态。这样,结合位运算,动归方程的状态表示就很容易了。

准备所需工具

    还有两样你需要准备的东西,那就是城市数据文件编译软件。代码中使用的城市数据文件可以有两种保存格式:一种是上例提到的矩阵式,也可以是 “城市名 城市X坐标 城市Y坐标” 式。大家可以根据实际情况自行调整。

    至于编译软件,小编在这里给大家提供的是C++代码,用你用得最顺手的编译器就可以了。小编在这里强烈推荐DEV-CPP!体积小,编译方便,代码还很美观。

    好了不啰嗦了,上代码~

a7ef531dcc06e0c1d3d8fea502b2ce46.png 5b256e4d18464466478a25f967da1073.gif

 代码示例(C++)

63253cdf73ee0a0d25a0ff3ed554edda.gif
#includeusing namespace std;// 定义常量const int INF = 0x3f3f3f3f;#define sqr(x) ((x)*(x))// 定义变量string file_name;int type; // type == 1 满秩矩阵格式, type == 2 二维坐标式int s;int N;// 城市结点数量int init_point;double **dp; // 动态规划状态数组dp[i][j],i表示集合V’,j表示当前到达的城市结点double **dis; // 两个城市结点之间的距离double ans;// 定义结构体struct vertex{  double x, y; // 城市结点的坐标  int id; // 城市结点的id  int input(FILE *fp){    return fscanf(fp, "%d %lf %lf", &id, &x, &y);  }}*node; double EUC_2D(const vertex &a, const vertex &b){  return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y));} void io(){ // 数据读入  printf("input file_name and data type\n");  cin >> file_name >> type;  FILE *fp = fopen(file_name.c_str(), "r");  fscanf(fp, "%d", &N);  node = new vertex[N + 5];  dis = new double*[N + 5];  if (type == 1){    for (int i = 0; i < N; i ++){      dis[i] = new double[N];      for (int j = 0; j < N; j ++)      fscanf(fp, "%lf", &dis[i][j]);    }  }  else{    for (int i = 0; i < N; i ++)    node[i].input(fp);    for (int i = 0; i < N; i ++){      dis[i] = new double[N];      for (int j = 0; j < N; j ++)      dis[i][j] = EUC_2D(node[i], node[j]);// 计算城市之间的距离    }  }  fclose(fp);  return;}void init(){ // 数据初始化  dp = new double*[(1 << N) + 5];  for(int i = 0; i < (1 << N); i++){    dp[i] = new double[N + 5];    for(int j = 0; j < N; j++)    dp[i][j] = INF;   } // 初始化,除了dp[1][0],其余值都为INF  ans = INF;  return;} double slove(){  int M = (1 << N);   // M就是第四部分所说的V’状态总数,1<  dp[1][0] = 0;   // 假设固定出发点为0,从0出发回到0的花费为0。TSP只要求是一个环路,所以出发点可以任选  for (int i = 1; i < M; i ++){   // 枚举V’的所有状态    for (int j = 1; j < N; j ++){     // 选择下一个加入集合的城市      if (i & (1 << j)) continue;       // 城市已经存在于V’之中      if (!(i & 1)) continue;       // 出发城市固定为0号城市      for (int k = 0; k < N; k ++){       // 在V’这个城市集合中尝试每一个结点,并求出最优解        if (i & (1 << k)){         // 确保k已经在集合之中并且是上一步转移过来的结点           dp[(1 << j) | i][j] = min(dp[(1 << j) | i][j], dp[i][k] + dis[k][j]); // 转移方程          } // 将j点加入到i集合中      }    }  }  for (int i = 0; i < N; i ++)  ans = min(dp[M - 1][i] + dis[i][0], ans);  // 因为固定了出发点,所以要加上到城市0的距离。另外要从所有的完成整个环路的集合V’中选择,完成最后的转移  return ans;} int main(){  io();  init();  string tmp = file_name + ".sol";  FILE *fp = fopen(tmp.c_str(), "w");  fprintf(fp, "%.2lf\n", slove());  delete[] dp;  delete[] node;  delete[] dis;  fclose(fp);  return 0;}

 算例运行 

例1:满秩矩阵式(type==1)

        就拿前文的例子,其文件存储的格式应如下:

4

0   3   6   7

5   0   2   3

6   4   0   2

3   7   5   0

运行结果

11

 

例2:二维坐标式(type==2)

         若城市数据文件如下所示:

     16
     1   38.24   20.42
     2   39.57   26.15
     3   40.56   25.32
     4   36.26   23.12
     5   33.48   10.54
     6   37.56   12.19
     7   38.42   13.11
     8   37.52   20.44
     9   41.23   9.10
   10   41.17   13.05
   11   36.08   -5.21
   12   38.47   15.13
   13   38.15   15.35
   14   37.51   15.17
   15   35.49   14.32
   16   39.36   19.56

运行结果

73.99

总结

    动态规划通过迭代方式寻找每一个子问题的最优解法,因此该解法可以得出TSP的最优解。但算法时间效率较差,因此在问题规模逐渐变大的过程中计算量会急剧膨胀。所以,本算法只适用于小规模求精确解的TSP问题,但对于你平常遇到的大多数TSP问题,这也足够了。

    所以,你学会了吗?

5fd22f01331c2d5dcae9f6e97234a5fd.png ff8b34de2c0a0d3bf3b59c252e81a433.png

-end-

941087d37963a4cc113667afc8d46ac7.png
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值