多元函数的向量表示_微积分-9.多元函数微分

7d1b95557253ad3027725ff3de54aea3.png
“你能保证我能回来吗?”“不能。但是,如果你能回来的话,你就再也不一样了“
——《霍比特人:意外之旅》

在结束了一段旅途之后,我们重新回到了微积分的世界中。但你我都知道,经历过线性代数世界的我们,有些事已经发生了改变。

在将微积分从一元推广向多元以前,先来重新复习一下导数与微分的概念。

导数与可微

我们知道,对于一元函数,其在一点

处的导数定义为:

如果我们切换一下视角,实际上可以将这个式子看作:

换句话说,

处的导数
实际上起到的作用是使得在该点处附近的自变量差值与函数差值近似的形成一个倍乘关系。

如果我们将

记作一个确定数值,比如
,而后将
附近的自变量差值记作为新的自变量,比如
,则我们可以将导数的这个近似函数写作:

这个简单而熟悉的倍乘关系,一下子就能让你联想到我们在《线性代数-0.线性》一文中提到的线性性质之一——齐次性,即

而,微分的定义,函数增量(差值)的线性主部,即将这个函数中的近似符号改为等号:

可以看到,当我们说函数在一点处可微,实际上就是将函数在一点处附近看作是线性的。不过由于对于一元函数,其定义域与值域一般来说是实数域到实数域的映射,即标量到标量的映射,故一般只能体现出线性的齐次性。

但是,当我们从一元推广到二元后,定义域与值域的情况就有了新的变化。


对于二元函数

,参照一元函数的导数定义进行推广,即在一点
处的函数差值与自变量差值的比值。

其中,函数差值的部分没有问题,即

,但自变量的差值就出现了变化,即该如何定义
的差值。

但这在有了线性代数的基础后,就全然不成问题。

在一元函数中,

的邻域,是以
为距离的数轴上的左右两侧范围,其差值为邻域内一点到
的距离;

而二元函数中,

的邻域,则是以该点为圆心,
为半径的圆形区域,其差值则为邻域中的内点到圆心的距离;

而在这个区域内,由两点所构成的“差值”元素,就不仅仅有了距离的度量概念,同时也因在区域中所处位置的不同具有了方向概念——因此由一元到二元的推广,实际上就是函数由标量到向量的推广。

6d45735d723bbc00709e8b4df4821cc7.png
定义域的拓展推广

故,二元函数的导数定义,即可写为:

我们知道,竖线符号

在线性代数中用来表示向量的模长,因此,在这里同时也即表示点
的距离。

而,若多元函数的自变量实际可以被看作向量的话,则它的函数值其实自然也同样的被推广至向量。因此,二元函数的导数即可被完整的写作:

严格的来说,这里应该使用双竖线
来表示,但是由于我们尚未正式的进入实分析阶段,因此暂时不引入范数的概念,而是先以距离或向量模长作一个直观的理解。

这样的计算方式成功解决了向量无法与向量相除的问题,不过,这样获得的导数,亦是一个标量,它保留了函数差值与自变量差值这比这一概念。却也很明显的,抛弃了向量空间的概念。

因此,如果我们将这一定义式按照前面的方式进行改写:

你看,在这里我们同样先用一个标记来记

,而自变量差值,实际就成了一个向量
,于是有:

由此就非常自然的推出了多元函数的线性主部,即它的微分。

而将一个向量,变换为另一个向量——这时,你应该明白,为什么在进入多元函数微分学之前,我想先引入线性代数的基础学习——导数

实际上,它的本质是一个矩阵!

在线性代数中,我们非常熟悉这样的表达:

即向量

根据线性的齐次性与可加性,实际可表达为两个基向量的线性运算(变换)。其中,
即分别表示在基向量
方向上的缩放(变换)倍数。

因此,多元函数的线性主部,即多元函数的微分,在经过导数矩阵

变换后,同样可表示为:

其中,

即分别表示其在
方向上的变化率。

到了这一步,我们就已经能够透过线性的本质,即其可分解性,来触摸到微分的本质。

在线性代数中我们说对于一个

维向量所代表的线性变换,可以视作将它等效分解为
个基向量(坐标轴)方向上的线性变换;

而对于多元函数一点处的微分,实际就是将这一点处的附近看作是线性,从而得以将这一点处函数的变化等效的分解为各个坐标轴方向的变化。

由此,多元函数在某个变量方向上的变化率如

即为偏导数,其在某个变量方向上的变化量如
即为偏微分,而把所有方向上的变化量之和称为全微分。

从这个推导过程你可以看出,全微分的意义绝不仅仅是简单的偏微分的代数和,实际上它所映射的是微分这一思想的线性性质。


二次型的回响

在学习线性代数二次型阶段,曾经保留了一个问题没有讨论,即二次型的正定。所谓正定,即保证二次型函数的值始终大于零。

对于一个一元二次函数,判断函数值是否恒大于零,我们曾经做过一些讨论。即只需要满足:

  1. 函数的极值点为函数的最小值点;
  2. 最小值点的函数值大于零。

就能够保证一个一元二次函数的值始终大于零;用函数图像来表达,即一元二次函数的开口向上且位于

轴的上方。

那么,对于二元二次函数,也即一个二元的二次型:

是否同样可以利用这两点的进行判断,即我们保证这个二次型抛物面的开口朝上且始终位于

平面的上方。

在一元函数中,极值点处的导数为0,即

而在二元函数中,为了满足极值点处的导数为0,则需要它的两个偏导数均为0,即:

偏微分的符号为了区别于全微分,将微分符号
的柄略微弯曲成了
,求取偏导数的过程也就是将该偏导数对应变量以外的其它变量视为常数而后求导。

因此我们同时求取该二次型函数的两个偏导数,即有:

实际上就获得了一个方程组:

解得其极值点应满足:


有了极值点后,我们需要来进一步的判别它是函数局部的最大值还是最小值。

在一元函数中,我们利用二阶导数

,来判别函数图像的凹凸性从而进一步的判别极值点为最大值还是最小值;

那么在二元函数中,同样的利用二阶导数,来做判别,我们将二次型函数记作

,则一阶导矩阵:

,二阶导矩阵则是进一步的对一阶导中的两个偏导项求解二阶偏导,故有:

因此,分别求解4个二阶偏导数,并分别标记为:

故,二阶偏导矩阵即为:

可以看到,极值点的未知数系数

即为该二阶偏导矩阵的行列式:

对于极值点方程

显然的,当

时,二次型函数将退化为单平方项函数,譬如当
时:

这时,极值点将不会是唯一的一个点,满足极值点条件的将是直线

a9d0b0eefab90e27295b200bfab543d3.png
二阶导行列式为0时,极值点成为了极值线,二阶导的判断失效

时,可以推得:

,则有

时,

时,

故唯一极值点

即为极小值,同理可推得
时,极值点即为极大值。

6a253fbb902d264ceebf2bebb6feeff1.png
在行列式大于0时,函数图像为一个完整的杯状抛物面

而当

时,这时候通过类似的推导,你可以发现,一阶偏导为0的点,在该状况下显然的不是极值点:

b8e4fa29c10e390e005bfd7031154935.png
行列式小于0时,一阶偏导为0点不再是极值点

细心的你其实应该注意到,二次型的二阶偏导矩阵

实际上,就是该二次型矩阵的2倍,即:

通过上面的推导,你可以明白了:

  • 为什么二次型正定的必要条件有二次型矩阵的行列式大于零;
  • 为什么可以使用判别式
    来判别二元函数的极值点,因为它本质上就是偏导数矩阵的行列式;为什么它只适用于二元函数,正是因为只有2阶矩阵行列式才满足对角线法则;
  • 二次型中,在满足了
    (即
    )的条件下,为什么可以利用
    方向的二阶偏导数
    与零的关系来判断极值点是极大值还是极小值;因为实际上在这个条件下,
    方向的二阶导是同号的,故它们与零的关系直接决定了函数图像开口的方向。

在这一节中,之所以利用二次型作为一个例子,来讨论多元函数微分,是为了使我们明白,线性代数与微积分之间不应该是两个割裂的领域,而是存在着深刻而紧密的联系。这一点,在往后的学习中需要我们牢牢的把握。

在本节完成了从线性代数到多元微分的过渡后,下一节我们将完全回到微积分的角度,来进一步的讨论多元函数求导的原则。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值