微积分在数学领域以致整个科学领域都占据着基础的和重要的作用。
但关于什么是微分,却似乎存在着各种各样定义,其定义的明确性、简洁性及无矛盾性显然不如微积分体系中另外一个重要的基础概念——导数。
至少,我们可以说,微分是说不清楚的。
有的人随即便会产生一个问题,如果微分是说不清楚,那么利用微积分计算得到的结果却是精确地并切实的支撑了现代科学的大厦,其原因是啥?
对于这个问题,其实没必要回答。熟悉微积分发展史的人,不,熟悉数学发展史的人,应该都晓得“贝克莱悖论”。贝克莱悖论质疑了大数学家、大力学家、大物理学家牛顿以及大哲学家、大数学家莱布尼茨所创立的第一代微积分在原理层面存在的重要逻辑问题。
但奇怪的是,从逻辑角度对无穷小的质疑并没有妨碍牛顿、莱布尼茨所开创的并经伯努利兄弟、欧拉、拉格朗日等发展的微积分方法的正确性。
那么回到我们的问题,现代数学涉及微分定义的方法的正确性可能并不能充分佐证相应的微分概念的明确性和无矛盾性。微积分方法和微积分原理并非是一回事。
让我们简单回顾一下微分的定义。
在一般教科书上,通常将微分定义为函数增量的线性主部,即
相信,对于刚接触这种定义的人,都会觉得第二种定义的可笑,因为根据
那么对于第一种定义呢,当x为自变量的时候,有
天呐!不可想象!哪里出了问题!
为了对此进行修正,一种主张是不承认复合函数的情形,即不允许出现
乍看之下,这种思路规避了问题。但这种解决方法恰恰是“削足适履”,为了这个修正不能不将微积分的方法进行大幅修改。设想我们不能允许t表示成其他变量的函数,那么定积分和不定积分中的换元法就没有存在的必要了。
因此,我们回到了林群院士所认同的论断:
微分的定义我从来就不清楚。 按通常书本定义,贾总师:林群院士:对微分的理解zhuanlan.zhihu.com看作自变量时,这和看作函数时的微分定义不一致。
但我的直觉告诉我,微积分学如果连微分都定义不清楚,那真是数学史的一大遗憾。可能的原因是,我们可能没有找到正确定义的方式,而非这种定义不存在。
为了解开本人长期以来的困惑,将在本博搜集整理现有的古今中外的微分定义,并按照“持之有故,言之成理”的标准对其进行讨论。也欢迎广大有识之士贡献所能接触到的微分定义,并持续就讨论。
一支穿云箭,千万“微分”来相会。