多元函数的向量表示_今日份翻译:微分(多元篇)

这一部分其实我觉得理解得好不好有高代的话语权。很多东西它翻不过来个儿不是因为人家说什么听不懂,而是脑子装不下......还有就是比较抽象的东西多了起来,也很考验高代的功底。

350296f78ec43d0f0f23b86a82ca5c70.png

一元微分的时候我们多次强调,微分的本质是一种线性映射,所以我们来看一看多元里的线性映射是什么样的。一元线性映射老简单了,粗暴理解为乘个系数就得了。放到多元里,“线性”长这个样子:

e65f20964a0a8a2a07621e792edc372f.png

然后再拿从n维欧氏空间映射到m维来说吧。

2c0f497174678098778aea5d5bcb6eca.png

04c69e0721d29b0d776104bc753c5fcf.png

我不晓得我大一发什么神经,反正当时迟钝的要死咋地都不明白那玩意儿的矩阵从哪儿来的。可能还是不熟悉矩阵语言吧?矩阵的好处就是目力能及的简洁。假如把a1...那一大堆都记为A,当成一个系数矩阵,而向量h的坐标h1,h2,...,hm也写成一个列向量,那么在形式上,它和一元并没有太大区别:f(x)=kxL(h)=Ah相应地,线性映射的线性组合,由常数的线性组合变为矩阵的线性组合,而线性映射的复合(乘法),也从常数乘积落到矩阵乘法。 (写个A不比呼呼啦啦扯一堆ijkh12345或者什么的看着舒服? )

0d262f9c0147a7c25bda49bfcfdf3423.png

琢磨透了这些个东西,我们就可以给多元函数的微分下定义了:

9edaf7f1bd59648fda6b07c3c4fe785e.png

可以看到她和一元的形式保持了高度一致。其中L(x)是关于h的线性函数,当h趋近于0时,α(x;h)是h的高阶无穷小,即o(h).换汤不换药,还是线性部分+高阶无穷小。这里L(x)h很耐人寻味,我私以为还是写成L(x)(h)比较好理解:对照一下一元函数微分,线性部分的系数是f'(x0),是在x0点处的导数值,也就是 由x的选取来确定的具体的数:我们敲定的x0不同,那么自变量增量前面乘的系数也不一样。同样这里的L(x),它其实也表示由x确定的一个针对h的线性映射,写开了就是:

17b24712b8e8bbe879b3a7aa0f1e2f5e.png

为啥L里面还跟个括号x,就是想说明后面乘的矩阵A是和x的选取有关的。其实一元里还能这么着理解:f'(x0)不当成一个具体的数值,把它也看成是一个线性映射,如此它将R中的 △x映射为R中的A△x,这个A是x处的导数值,还是跟x的选取有关。 后面的内容不特别指出的话都说的是多元实值函数。 这时我们会发现一个问题,多元里面导数是怎么个存在方式?之前说一元里导数和多元里差很多,我觉着本质还是得落到定义域不同吧。实数轴用单位向量指示方向的其实就一个1,或者理解成两个1和-1都可以,不管怎么理解吧反正是有限个。 一元里我们可以简简单单把函数值的变化量和点的差做一个除法,然后就是经典的喜闻乐见:我们卡变化率当导数,这个变化率直接就是个比值。

aa48d5d5ba0bcaad5f13b5169c6b23bb.png

再进一步我们让△x趋近0+和0-,就能表示方向,两个方向的极限都存在且相等的话我们就说导数存在。但从 9bcc75deb489ccc7f897dad497305176.png开始再往上一个空间里就会有无限多个单位向量能表示方向,比如二维里,转个360°,有多少向量数不清。这就造成了一个麻烦, 两点的差不是一个具体的数值,而是一个有方向的量,这就没法直接拿函数值的变化量和它做商来当一点附近的变化率了。 也就是说导数不好像一元那样直接定义了。 于是我们引入了“方向导数”:

c447c14eb7ff5a7ddc6b57cc4dce4b4c.png

这里v是空间里的单位向量,h是个实数。 这个极限称为函数f在点x0 沿着向量v方向 的导数。 (有的版本说h趋近0+,我感觉都行?) 先提前说一下,方向导数本质上还是一个数值,表示的是“多元函数沿着我们想要的方向上的变化率”,而方向导数存在的前提是:函数可微。也就是由上述微分形式成立。我忘了是哪次作业还是小测,应该不是大考,里面有个题就是求方向导数,平常方向导数题一般都会说一下判断可微,但是那题没说,我也就没朝那方面想,没证可微,后来老惨了。

d939a9a2008aa4b311d7125836c40d10.png

再往后就到了偏导了。不同课本的介绍顺序不太一样,我就顺着自个儿的思路说吧。多元函数不管怎么复杂,总得有几个能甩蔓儿的变量吧?也就是说,每个多元函数都能表示成:

2d136fd54021329a460c40a3f372d73f.png

自变量是x1,x2,... ,xn.放到二元里,大多是x,y.放到三元里,大多是x,y,z.放到四元里,嘿嘿,我没见过。

4d107e4504bf93a1c0f179d08c39349a.png

那我们把方向导数里那个方向v给它对准了各个xi,就得到了各个变量的偏导数。因为各个变量相互独立,所以求方向导数(偏导)的时候不用再考虑其他变量的影响,当成常数就ok.有偏导自然得有个不偏的,我们称之为全导数。(应该还有别的叫法吧,反正我不知道,就先说全导数),我们针对一下最后一个变量xm,对它的全导数怎么定义? 首先借助偏导数的概念,我们再 兜回 微分:

8aec5d87ae80a6c4241db4e0570599b1.png

也就是说,我们把一个函数的微分表示为它的 自变量坐标的微分的线性组合了。理解成全微分是各个变量的微分的线性组合,也没啥问题。不管怎么理解,有了上面的等式,我们根据不同变量间的微分关系:

fefd67201d6f5144364a56fc4b1b4e13.png

就能得到:

d5ee5c0d4f9f0b9db7dfca976ddfccb1.png

这时如果我们把f看成是xm的一元函数(因为其他变量和xm是相互独立的,所以这个操作是可行的),那么应该也有微分关系:

1f17033082b979bb2f4c1f7a0febd87e.png

代入就可得f对xm全导数的定义:

9b19fa8999683809be0cc8fa3a7742cf.png

百科说, 全 导数的出现可以作为一类导数概念的补充,其中渗透着整合全部变量的思想 。 行吧,大概明白了。 再然后是梯度的定义,卓里奇书里是这么个介绍法:

99507c812e782ebcd96bf95a35c639f5.png

WRO,人言否???我寻思着还是看比较直观少些权威的理解吧。虽然上面说的一半我看不懂,但是最起码从形式上能看出来梯度的本质是个 向量。这个向量怎么来呢?给定函数对它所有的向量求偏导,这些偏导组成的向量就是梯度。而后我们知道了,这个向量的方向和方向导数取得最大值的方向是一样的,它的模就是方向导数的最大值。(绕不绕?)就是说嘛,一个方向就有一个导数,那么多个方向导数,总有一个最大的,梯度这个向量的方向,就是沿着这个方向的,而巧的是梯度的“长度”也刚好贴上这个最大值。

955951d75783cc0d08a57e2b800b713a.png

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值