yolo系列外文翻译_YOLO文献总结《You Only Look Once》

YOLO(You Only Look Once)是CVPR 2016提出的一种实时目标检测方法,通过将检测任务视为回归问题,用单个神经网络预测边界框和类别概率,实现了端到端的检测。YOLO速度快、泛化能力强,但对小物体的定位准确性较低。文章介绍了YOLO的架构、训练和实验设置,以及与现有方法的对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLO:统一、实时的目标检测

这是Joseph Redmon等人于发表于CVPR 2016的一篇关于目标检测的文献,提出了目标检测领域经典的YOLO模型,一种端到端的实时目标检测方法。

1. 主要内容:将目标检测任务作为一个回归问题,而不像先前的方法那样改造分类器用来识别;

使用单个神经网络就可以从输入图像直接预测边界框和分类概率;

YOLO的速度非常快,在 TITAN X GPU上的实时处理速度达到了45fps;

YOLO的泛化能力强,效果比其他目标检测方法(DPM、R-CNN)更好;

2. 介绍:

现有的物体检测方法,都是将分类器改造,去评估一张图像的各种不同尺度的区域内,是否包含物体以及物体是种类。比如DPM对整张图片使用一个均匀移动的滑动窗口进行分类。最近的 R-CNN采用的是 region proposals 的方法,生成潜在(可能包含待检测物体)的边界框,再使用分类器去判断每个边界框里是否包含有物体,物体类别的概率和confidence。因为每个组件都需要分开训练,所以这种方法过于复杂,很难优化。

本文则将目标检测定义为单个的回归问题,直接从图像像素得到边界框的坐标和类别的概率。YOLO非常简洁(如上图所示),只用一个卷积网络就可以同步地预测多个边界框的位置和类别概率。YOLO在整张图片上面训练,可以直接优化检测性能。这种统一架构有以下几个有点:

A. YOLO特别快。在 Titan X 上,不需要经过批处理,YOLO处理速度可达到45fps,Fast-YOLO可

### 如何获取YOLO系列目标检测模型的相关外文学术论文 对于希望深入研究YOLOYou Only Look Once系列算法的研究人员来说,访问原始英文文献是非常重要的。以下是几种有效的方法来获得这些资源: #### 使用学术数据库订阅服务 许多大学图书馆提供对多个在线期刊和服务的免费访问权限,如IEEE Xplore Digital Library、ACM Digital Library以及SpringerLink等平台。如果所在机构有此类订阅,则可以通过校园网登录并搜索所需文章。 #### 利用开放存取资源 部分出版物支持作者上传预印本或最终版本到个人主页或是arXiv这样的公共存储库中,在这里可以找到大量最新的研究成果而无需付费。例如,Joseph Redmon在其GitHub页面上提供了早期YOLO版本的链接[^1]。 #### 借助社交网络与论坛交流 加入专业的社交媒体群组或者技术讨论区域能够帮助快速定位特定资料的位置。Reddit上的r/MachineLearning板块经常有关于计算机视觉领域最新进展的话题分享;同样地,Twitter也是追踪前沿动态的好地方之一。 #### 请求通过ResearchGate 这是一个面向科研工作者的专业社交网站,允许用户向其他成员发送私信询问文件共享事宜。大多数情况下只要礼貌地说明用途就能得到积极回应。 #### 应用科学文献搜索引擎 Google Scholar是一个强大的工具,它不仅能够索引来自不同源的数据记录,还具备相似文档推荐功能以便更全面地了解某一主题下的全部关联作品。输入关键词“YOLO object detection”,即可浏览一系列相关条目,并查看是否有可直接下载PDF选项。 ```python import webbrowser def open_yolo_paper_links(): links = [ "https://pjreddie.com/media/files/papers/YOLOv3.pdf", # YOLOv3 PDF link example "https://arxiv.org/abs/1804.02767" # arXiv preprint server URL pattern ] for url in links: webbrowser.open(url) open_yolo_paper_links() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值