pytorch保存模型pth_Pytorch训练笔记

本文总结了PyTorch训练模型的技巧,包括指定GPU、加载数据集、自定义数据集的方法,以及如何保存和加载模型参数。此外,还介绍了微调模型、冻结参数、多GPU训练和测试模型的步骤。
摘要由CSDN通过智能技术生成

509901799eb4184e6808a5a8edc7a1e3.png

总结一些Pytorch训练模型的技巧。

指定使用哪些GPU

import os
os.environ["CUDA_VISIBLE_DEVICES"] = '0,1'

选择设备

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('The device is: ', device)
model.to(device)

加载数据集,示例来自pytorch-tutorial

import torchvision
import torchvision.transforms as transforms

# Image preprocessing modules
transform = transforms.Compose([
    transforms.Pad(4),
    transforms.RandomHorizontalFlip(),
    transforms.RandomCrop(32),
    transforms.ToTensor()])

# CIFAR-10 dataset
train_dataset = torchvision.datasets.CIFAR10(root='../../data/',
                                             train=True, 
                                             transform=transform,
                                             download=True)

# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=100, 
                                           shuffle=True)

如需自定义数据集,则需要继承torch.utils.data.dataset中的Dataset类

from torch.utils.data.dataset import Dataset
 
class MyCustomDataset(Dataset):
    def __init__(self, ...):
        # stuff
        
    def __getitem__(self, index):
        # stuff
        return (img, label)
 
    def __len__(self):
        return count

其中包括三个主要部分:

  • __init__( ) 一些初始化过程写在这里
  • __len__( ) 返回所有数据的数量
  • __getitem__( ) 返回数据和标签,可以这样显式调用
img, label = MyCustomDataset.__getitem__(99)

更多内容可以查看自定义数据集的读取方法小结

保存,加载模型参数

# 保存整个网络
torch.save(model, PATH) 
# 保存网络中的参数, 速度快,占空间少
torch.save(model.state_dict(), PATH)
#--------------------------------------------------
# 对于上述保存方法,加载的方法分别是:
model_load = torch.load(PATH)

# 仅保存参数,加载时需要先得到网络结构
model_load = MyNet()
model_load.load_state_dict(torch.load(PATH))

如需保存更多信息,如优化器参数,模型准确率等

torch.save({'epoch': epoch + 1, 'state_dict': model.state_dict(), 
            'best_acc': train_accuracy,'optimizer': optimizer.state_dict()},PATH)

# 对应加载模型参数以字典的形式
model_dict = torch.load('./checkpoint.pth')
model.load_state_dict(model_dict['state_dict'])
optimizer.load_state_dict(model_dict['optimizer'])

微调模型,修改最后一层全连接层输出类别数,以适用于自己的数据集

fc_features = model.fc.in_features
# 假设自己数据集中有20类
model.fc = nn.Linear(fc_features, 20)

冻结模型参数

# 冻结1-8层模型参数,如使用block,则一个block为一层
ct = 1
for child in model.children():
    if ct <= 8:
        for param in child.parameters():
            param.requires_grad = False
    ct += 1
print('freeze model')

#对应的,优化器需要修改为
optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=learning_rate, momentum=0.9)

训练模型

# For updating learning rate
def update_lr(optimizer, lr):    
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

# Train the model
total_step = len(train_loader)
curr_lr = learning_rate
for epoch in range(num_epochs):
    model.train()
    for i, (images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)
        
        # Forward pass
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if (i+1) % 100 == 0:
            print ("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}"
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

    # Decay learning rate
    if (epoch+1) % 20 == 0:
        curr_lr /= 3
        update_lr(optimizer, curr_lr)

测试模型,测试前需要调用model.eval(),如需在测试后继续训练,记得在训练前调用model.train()

# Test the model
model.eval()
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))

使用多GPU训练,调用nn.DataParallel,来自知乎-pytorch如何使用多GPU

import torch.nn as nn

if device == torch.device('cuda'):
    print('set parallel')
    model_parallel = nn.DataParallel(model, device_ids=[0,3])
    torch.backends.cudnn.benchmark = True

# 对应的,保存模型时需要从model_parallel中取得model
torch.save(model_parallel.module.state_dict(), PATH)
当你构建好PyTorch模型训练完成后,需要把模型保存下来以备后续使用。这时你需要学会如何加载这个模型,以下是PyTorch模型加载方法的汇总。 ## 1. 加载整个模型 ```python import torch # 加载模型 model = torch.load('model.pth') # 使用模型进行预测 output = model(input) ``` 这个方法可以轻松地加载整个模型,包括模型的结构和参数。需要注意的是,如果你的模型是在另一个设备上训练的(如GPU),则需要在加载时指定设备。 ```python # 加载模型到GPU device = torch.device('cuda') model = torch.load('model.pth', map_location=device) ``` ## 2. 加载模型参数 如果你只需要加载模型参数,而不是整个模型,可以使用以下方法: ```python import torch from model import Model # 创建模型 model = Model() # 加载模型参数 model.load_state_dict(torch.load('model.pth')) # 使用模型进行预测 output = model(input) ``` 需要注意的是,这个方法只能加载模型参数,而不包括模型结构。因此,你需要先创建一个新的模型实例,并确保它的结构与你保存模型一致。 ## 3. 加载部分模型参数 有时候你只需要加载模型的部分参数,而不是全部参数。这时你可以使用以下方法: ```python import torch from model import Model # 创建模型 model = Model() # 加载部分模型参数 state_dict = torch.load('model.pth') new_state_dict = {} for k, v in state_dict.items(): if k.startswith('layer1'): # 加载 layer1 的参数 new_state_dict[k] = v model.load_state_dict(new_state_dict, strict=False) # 使用模型进行预测 output = model(input) ``` 这个方法可以根据需要选择加载模型的部分参数,而不用加载全部参数。 ## 4. 加载其他框架的模型 如果你需要加载其他深度学习框架(如TensorFlow)训练模型,可以使用以下方法: ```python import torch import tensorflow as tf # 加载 TensorFlow 模型 tf_model = tf.keras.models.load_model('model.h5') # 将 TensorFlow 模型转换为 PyTorch 模型 input_tensor = torch.randn(1, 3, 224, 224) tf_output = tf_model(input_tensor.numpy()) pytorch_model = torch.nn.Sequential( # ... 构建与 TensorFlow 模型相同的结构 ) pytorch_model.load_state_dict(torch.load('model.pth')) # 使用 PyTorch 模型进行预测 pytorch_output = pytorch_model(input_tensor) ``` 这个方法先将 TensorFlow 模型加载到内存中,然后将其转换为 PyTorch 模型。需要注意的是,转换过程可能会涉及到一些细节问题,因此可能需要进行一些额外的调整。 ## 总结 PyTorch模型加载方法有很多,具体要根据实际情况选择。在使用时,需要注意模型结构和参数的一致性,以及指定正确的设备(如GPU)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值