为什么训练保存的pth模型权重那么大,别人的训练保存的那么小?
因为别人训练模型时,只保存了模型,而你训练的模型还保存了其它一些参数,比如优化器(optimizer)、调节学习率(lr_scheduler)、轮数(epoch)等一些其他参数信息,所以我们训练的模型很大。
我们可以通过看训练脚本train.py
,可以知道保存了哪些模型参数,训练时一般都会将优化器(optimizer)、调节学习率(lr_scheduler)、轮数(epoch)等一些其他参数信息,比如以下代码:
之所以保存这些信息,是因为我们可以通过这些参数接着训练(比如我们训练200个epoch结束后,结果还没有收敛,我们就可以通过第200轮保存得到的.pth模型,接着训练)
但是我们可以将我们训练好的模型变小,将模型的其他参数去掉,只保存训练好的模型参数。执行以下代码就可以获得没有其他参数的模型。
import torch
from src import net # 导入你训练的模型网络