利用点到直线的距离最小二乘法_MIT线性代数笔记2.3(最小二乘)

这篇博客深入探讨了最小二乘法在机器学习中的核心地位,解释了投影的概念,并通过具体例子展示了如何求解最小二乘问题。文章详细分析了点到直线的最小距离问题,以及在无解情况下如何找到最佳近似解。内容涵盖矩阵、子空间和线性回归问题,是理解最小二乘法的重要参考资料。
摘要由CSDN通过智能技术生成

3062736b1cb1dcccbce4bcf808c4b411.png

最小二乘可谓是机器学习的最基础的算法。尤其重要,可以说是非常重要的一课!整个正交这一章就为了讲明白最小二乘法


再谈投影

从上一节我们知道

会把一个向量b投影到C(A)中。那么存在以下两种极限情况:
  • 如果b垂直于C(A),那么Pb=0, b肯定在A的左零空间里(相当于b和C(A)完全没有交集,e最大,最坏的情况)
  • 如果b本身就在C(A)里,那么 b=Ax, Pb=b. 误差e=0, 投影矩阵为单位阵,这时候Ax=b可解。不需要最小二乘法了。

但是在通常情况下,一个向量即含有在C(A)中的部分p也含有垂直于C(A)部分的e(e实际上在A的左零空间里), 投影后e被干掉,只剩在C(A)中的p。

关于I-P

将b投影到A的左零空间的投影矩阵是I-P:

再谈最小二乘

e0c681584ca58b728e2ee3f63fde3b9c.png
最简单的最小二乘问题,还是上一讲的(1,1), (2,2), (3,2)三个点拟合问题

我们的目的是求出C和D,使得

对于点(1,1), (2,2), (3,2) 是最佳拟合的直线。这个过程也叫作
线性回归。这种方法对于没有 离群点(outliers, 比如(1,1000)这种明显偏离其他值的数据)的数据集是很好的一种方法。

“最佳" 在数学上意味着这些点到拟合直线的距离之和最小。换句话说,我们要最小化

。如果这些点都经过拟合直线,那么有:

但是这是不可能的,这个方程组Ax=b是无解的, 其中

最小二乘有两种理解方式:

  1. 我们要找出这些点到拟合直接的距离
    并且使这些e最小, 这些点在拟合直线的投影部分
    就是数据点在拟合直线上的最佳近似,
  2. 矩阵和子空间的角度:最小二乘实际上是将b投影在A的列空间,投影结果为p,将垂直部分e投影在

现在给出例子的解法:

套用公式:

可得:

我们也可以使用微积分的方法求出C,和D:

, 分别对C和D求导并令导函数为0,也可以解得答案。

再谈

记住,最小二乘法要求A(或者说

)必须可逆

习题

题1 对于线性回归问题

,经过点(t=-1, b=7) (t=1, b=7) (t=2,b=21).求解最小二乘问题,解出C,D:

答: 常规操作,套公式:

,答案:

题2 在上一题的基础上求出 投影向量

,证明误差向量为
,证明

答:

, e = b-p = (2,-6, 4).

题3 假设

的时候
,计算
,e=0,因为b在?

答:

,计算得e=0, 因为b在C(A)中

题4 四大子空间中哪个包含e? 哪个包含p? 哪个包含

,N(A)是怎样的?

答:

题5 最小二乘法求解:

答:套公式即可

, 可以发现,对称的t会得到 对角的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值