单调有界定理适用于函数吗_实数的完备性定理

实数系的七个基本定理

我们假定实数的完备性(连续性)公理是:

0 戴德金原理 Dedekind completeness

实数系还有七个关于连续性的基本定理,它们分别是:

  1. 确界存在原理 least-upper-bound property
  2. 单调有界定理 monotone convergence theorem
  3. 闭区间套定理 nested convergence theorem
  4. 有限覆盖定理 Heine-Borel theorem
  5. 聚点定理 Bolzano-Weierstrass theorem
  6. 致密性定理 Bolzano-Weierstrass theorem
  7. 柯西收敛原理 Cauchy completeness

【注】聚点定理和致密性定理的本质是相同的,可以看做是同一个定理。

七个定理等价性的证明路径

下面我们证明,这七个定理(再加上戴德金原理)是等价的。证明路径是:

链条一

公理0↔公理0'↔定理1

(其中公理0'是戴德金原理的等价命题。链条一意味着实数连续性的两种表述:戴德金原理和确界存在原理,是等价的。更详细的信息,见实数的定义)

链条二

定理1→定理2→定理3→定理4→定理5→定理6→定理7

链条三

定理7→定理3→定理1

画成有向图就是:

8ba8a6de44f62991859b9cd8b7aee89a.png

从上图就可以看出,这七个定理(再加上戴德金原理)是彼此等价的。

链条一

0 戴德金原理
的任何非空子集
,则

我们对此命题换一种表述:

0' 戴德金原理(等价表述) 如果两个集合
满足如下性质:
那么

下面先证明这两种表述是等价的。

0→0'

证明:这是显然的。

0'→0

证明:定义

。易知
,从而
非空,即
满足原理0'的条件①。下面分两种情况。

情况1:如果

,那么显见
,取
即可。

情况2:如果不是情况1 ,那么

。对于后者,取
,则由
可得
,由
可得
,但这就变成了情况1,矛盾,所以只能是前者
,即
满足原理0'的条件③。

假设

,那么
,从而有
,矛盾,故假设不成立,所以
,故
,即
满足原理0'的条件②。

由原理0',

,又
,故
,取
即可。

下面我们证明戴德金原理和确界存在原理是等价的。

0'→1

1 确界存在原理
的任何非空子集
内有上界,则
内有上确界。

证明:定义集合

,定义集合

下面说明

满足原理0'的三个条件:

①:因为

有上界,所以
,令
,则
,故
,故
。由
的定义知
,又
,故
。因
非空,故

②:由

③:任取

。由
,由
的定义知
。因为
,故
,从而

由①②③和原理0'知

。下面证明

(1)在①中已证

,故

(2)因为

,故
,由
的定义知
。又
,故
。这样我们就证明了:

由(1)(2)知

,即
有上确界。

1→0'

0' 戴德金原理(等价表述) 如果两个集合
满足如下性质:
那么

证明:因为

,所以
有上界。由确界存在原理知,
有上确界。同理
有下确界。设
。现在我们找一点
满足

(1)如果

,那么
,取
即可。

(2)如果

,那么
。下面再分两种情况:

(2.1)如果

,那么
,取
即可。

(2.2)如果

,那么
。又
,故
。因为
,所以
。因为
,所以
,这与
矛盾,故本情况不存在。

综上所述,总能找到

使

链条二

1 确界存在原理
的任何非空子集
内有上界,则
内有上确界。

在本链条中,我们以确界存在原理为起点。

1→2

2 单调有界定理 如果数列单调递增且有上界,那么该数列收敛。

证明:设数列

有上界,根据确界存在原理,数列
有上确界

由上确界的定义,

对上述

,由上确界的定义和单调递增知

,即

综上,

2→3

3 闭区间套定理 如果数列
满足以下两个条件:
那么以下两个结论成立:
(该极限值记为
② 上述
是满足
的唯一实数。

结论①的证明:由条件①

知:

数列

单调递增且有上界
,数列
单调递减且有下界

由单调有界定理知

收敛

由极限的减法知

,即

结论②的证明:(存在性)由单调有界定理的证明过程可知

由上、下确界的定义知

(唯一性)设另一个

也满足条件

,由夹逼定理知道

3→4

4 有限覆盖定理 如果开区间所形成的开区间集
覆盖一个闭区间
,那么总可以从
中选取有限个开区间,使得这有限个开区间覆盖

证明:用反证法。假设

不能被
中的有限个开区间覆盖。

等分

为两个区间:
,则其中至少有一个区间不能被
中有限个开区间覆盖,设为
。再等分
为两个区间,则其中也是至少有一个区间不能被
中有限个开区间覆盖,记为
。这个过程可以无限重复下去,这就得到了一个无穷闭区间列
。显见它满足以下三个条件:

①每一个闭区间

都不能被
中有限个开区间覆盖。

由②③,根据闭区间套定理知

由覆盖的定义知

中有一个开区间
使

由数列极限的保序性知道,

也即

。这表明,只要是形如
的闭区间,都可以被一个开区间
覆盖,但这和①是矛盾的。

4→5

5 聚点定理 每个
上无穷、有界的子集
都有至少一个聚点。

证明:因为

有界,所以它包含于一个闭区间
。现在证明
有聚点。

反证法。假设

没有聚点,那么每个
的邻域
至多含
中有限个数。定义
,由有限覆盖定理,
中有限个开区间就可以覆盖
,即
。由于每一个
都至多含
中有限个数,故
至多含
中有限个数,又
,故
至多含有限个数,与
是无穷集合矛盾。

5→6

6 致密性定理 任一有界数列都有收敛的子列。

证明:设数列

有界,其值域是

如果

是有限集,那么存在
使
(其中
),这样得到的子列
收敛;

如果

是无限集,那么由聚点定理知
上有一聚点
,使
的任何邻域
都含
中无限个数。特别地,
,……,
,……,这样就构造出一个子列
。由
,即子列
收敛。

6→7

7 柯西收敛原理 数列
收敛的充要条件是

必要性的证明:由

收敛,不妨设
,则
,此时

充分性的证明:先证明一个引理。

引理:
有界。

引理的证明:由条件,对于
,有
。取
,则
,故
,即
某项以后有界,故
有界。

由条件,

。由致密性定理,
有一个子列
收敛,记
,即
。取
,则
,此时有

连起来

,即
收敛。

链条三

7 柯西收敛原理 数列
收敛的充要条件是

在本链条中,我们以柯西收敛原理为起点。

73

3 闭区间套定理 如果数列
满足以下两个条件:
那么以下两个结论成立:
(该极限值记为
② 上述
是满足
的唯一实数。

①的证明:不妨设

。显见
递增,有
,因此
,也即
。由柯西收敛原理,
收敛,设其极限为
。有
=

②的证明:(存在性)先证明

。反证法。假定
,取
,则
,这与
矛盾,因此
。同理可证

(唯一性)设另一个

也满足条件

,由夹逼定理知道

3→1

1 确界存在原理
的任何非空子集
内有上界,则
内有上确界。

证明:假设

是有上界的非空集合,考虑
所有上界构成的集合
,我们要证明
存在。

显见

。任取
,则有

,则令
,否则令
。此时有

,则令
,否则令
。此时有

这样就得到闭区间套

,满足
,且
。由闭区间套定理,
是唯一满足
的实数,此时有
。下面我们证明
。只需证明两点:(1)
(2)

(1)反证法。假设

,则由
的定义知
。取
,则
,即
,又
,故
,这与
矛盾。

(2)反证法。假设

,取
,则
,即
,又
,故
,这与
矛盾。

综合(1)(2)知

,即
有上确界。

微妙之处

  • 严格来说,上述8个命题不都是等价的,其中闭区间套定理柯西收敛原理要稍弱于其他6个(闭区间套等价于柯西收敛,其他那6个也是互相等价的)。这是因为,其他6个都足以推出阿基米德性质,但闭区间套定理和柯西收敛原理还不足以推出阿基米德性质。在满足阿基米德性质的假定下,这8个确实是彼此等价的。一般我们把柯西收敛原理刻画的性质叫完备性(completeness,这是作为度量空间的完备性),把戴德金公理或确界存在定理刻画的性质叫连续性(continuity)。这表明完备性稍弱于连续性。
  • 介值定理(Intermediate Value Theorem, IVT)与实数的各个连续性定理(除闭区间套定理和柯西收敛原理的那6个)是等价的。注意到连续函数的定义并没有涉及到实数的连续性(完备性)。
  • 综上,戴德金公理=确界存在定理=单调有界定理=有限覆盖定理=聚点定理=致密性定理=介值定理=闭区间套定理+阿基米德性质=柯西收敛原理+阿基米德性质(更简单地,连续性=完备性+阿基米德性质);闭区间套定理=柯西收敛原理。

新版声明

本文近期(2020.10)将更新,主要是加入阿基米德性质。新的图如下所示

e91798295949138145a326b9f279c44d.png

上图中8表示阿基米德性质。目前缺少的环节是:2→4,6→1,3→7,1→8

点此回到目录

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值