单调有界定理适用于函数吗_3.3 确界性定理、各实数连续性间的等价性

cad045b8a5bc77445626026add83932d.png
本节讨论余下实数域连续性质:确界性定理、以及6大实数连续性的等价性

一、确界性定理、确界运算性质

1.1 Thm 实数域确界性定理

有上(下)界. 则
一定有上(下)确界.

证: 设上界为
, 取
. 考虑中点
,若
不为
的上界, 则
.
; 否则
. 得到闭区间套
. 显然所有
均为
的上界,
均属于
.

由闭区间套定理
. 显然,
不为
上界;
中的点不可能大于
. 即
. 合起来即

1.2 Prop 确界属于边界点集

证:
由确界的上界性
.

1.3 Def 广义确界

对于无上界集
, 定义
; 对于无下界集
, 定义

1.4 Lemma 上下确界转换关系

定义
的相反数集
.


证:由上界性
由确界的确界性
. 则取相反数仍成立:
保证下界性,;
,保证确界性. 即

二、由确界性到单调有界收敛

2.1 Thm 确界性定理

单调有界收敛
证:设数列
为单调递增列,且有上界. 则由确界性原理知
有上确界
.

由于
. 则取
. 由单调性,
. 即
.

三、由柯西列收敛性到单调有界收敛

3.1 Lemma 单调有界列

柯西列
证:设数列
为单调递增列,且有上界
. 若
. 则由单调性
. 有三角不等式,
.

的新上界. 重新考虑
. 而一定存在
使得
. 所以上述循环经有限次结束,即一定能找到
.

3.2 Thm 柯西列收敛

单调有界收敛
显然成立.

四、由Heine-Borel定理到单调有界收敛

4.1 Thm Heine-Borel定理

单调有界收敛
证:设数列
为单调递增列,且有上界
. 则截取
有界.

易知
也有界. 则
为有界闭,根据HB定理,
为紧集. 则在度量空间中,
为列紧集.

则数列
一定存在子列
. 则
.

由于单调性,
.

fce430a47506ea2b6165c88a9302dafb.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值