单调有界定理适用于函数吗_数学分析笔记|一个与周期函数有关的特殊积分公式...

607df9a9c20f73b54a24d9a7da0aefec.png

近日学习裴书有感,看到了一个很漂亮很实用的结论:

Riemann引理:若
上可积,
为周期,在
上可积,则有:

我们来考虑这个结论的证明方式。由两端积分的形式我们可以联想到定积分第一中值定理,但是很不幸,没有保号的条件。所以我们考虑先证明一个特殊情形(也就是定积分第一中值定理缺乏的条件),在原命题的题设里面加入

,我们再来考虑证明。

所以我们可以先证明:

上可积,
为周期,在
上可积,
则有:

为了合理地利用周期,我们想办法把

刚好变为周期的整数倍。很显然,
为周期。于是乎我们找到充分大的正整数
,使
。这个时候
便相当于
的2mn个周期。

随之我们扩充函数定义:令

.

从而

上可积,且
.

然后将

作2mn等分,作分划
,每个小区间恰是
的一个周期,长
。如此一来便可以得到:

(利用定积分第一中值定理)

其中

满足

再通过换元积分法计算和式中的积分式:

代入上式,有:

注意到上式的和式可以放在

的两个Darboux和之间,于是我们便可以轻松得到:

于是我们便证明了

的情形。(事实上也相当于
保号的情形,因为可以取
)去掉这个条件呢?

我们可以定义

的“正部”和“负部”函数。也即:

我们构造出了两个保号的函数。同时注意到:

所以有:

剩下的想必不再赘述。于是我们证明了这个引理。

再来考虑广义的积分。如果把b改成

呢?
Riemann定理:若
上绝对可积,
为周期,在
上可积,则有:

其实也不难证明。首先注意到g(x)是有界的,所以存在正数

使
。我们可以通过绝对值不等式将这个积分作一个放缩,同前面的结论联系起来。

注意到第二个积分是可以通过调整A的值使之充分小,小到一定程度再固定A,再调整n的下界可以使第一个积分充分小,于是我们就可以使这个表达式任意小辣~

于是我们证明了这个结论。顺带一提,上面的n应该是可以不局限于正整数的,改成正实数趋近于正无穷大概也行,只需要在第一个证明中改m取为使mn为整数的充分大即可。

这个结论对于被积式含有周期函数因式的情形很实用,我们来做一些例题。

e.g.1 设

为有界周期函数,周期为
,且

试证

提示:换元

即可。

e.g.2 设

,求F'(0)

e.g.3 设函数

在区间
上单调,并且
收敛. 证明:

因为都是用上面的结论可以秒的题,所以解答就不赘述了哦

题后话:1.这个知乎的网页编辑器太抽风了,有时候打错了字会出现大量乱码,这一点让我很烦躁,希望知乎官方能解决一下这个问题。不过没解决也没事,也许会尝试学习在mdnice写文章转过来。

2.原定的回归文章是定积分的可积性证明方法总结专题,但是后来我发现我写起来感觉很费劲,不知道会花多久时间写完,现在又有很多事情要做,所以先写篇简单的文章,以后再考虑把那篇文章补好。(不过可能慢慢熟悉了,我越来越觉得定积分可积性的证明只要熟悉勒贝格定理一个方向的证明就可以解决多数可积性证明问题,越想感觉我的计划专题越水(不是))

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值