custompage.width 不能小数吗_你很可能不知道的取整、小数函数有关的奇怪结论

这篇博客探讨了无理数在实数集中的稠密性质,通过一系列数学证明展示了如何在任何两个无理数之间找到其他无理数。文章还涉及线性无关的概念,解释了在整数上线性无关的向量的性质,并通过极限和抽屉原理等工具进行深入讨论。此外,博客还讨论了如何利用贝祖定理寻找满足特定条件的整数解,并指出某些常数的最优性。
摘要由CSDN通过智能技术生成

eed31e902e819a92205dfd95ed688ae6.png

一些整数、小数部分有关的定理和各种稀奇古怪的证明

以及
,下面证明几个定理:

对于无理数
稠密,读者自证不难

任意两个满足
的无理实数,存在
使得

假设存在
使得
,那么存在
,那么

是有理数,又
故该有理数不是一个整数

其中
待定的正整数,那么

另外

,因为
无理数,
在区间
稠密,结合
,结论易证

假设不存在
使得
,假设命题不成立,那么
恒成立

因为

稠密性,任意
,总能取
使得

,可得一
满足此条件,注意到

我们取正整数

使得
那么我们有如下的不等式链,故矛盾

任意给定实数
存在一个
,对任意

考虑正整数
满足
,并考察代入
个非负整数

并且考察半开矩体

中的点
,将半开矩体细分成
个小半开矩体,每个形如

,由抽屉原理,必有
落入同一个小矩体

是一个正整数,利用小数部分函数的性质容易推出原结论成立

实数
互不相等,
满足

,求证

考察

根据

的方法,我们设
,各实数取成
其中
合计

并且容易证明给定

满足其条件的解数有无穷多,不妨设为

其中上式最后一个

是因为
辅角差控制在
以内,且弧长小于距离

然后令

根据原先条件极限式子,
从而由
知原命题得证

如果
在整数上线性无关,就是说不存在非零整数
使

那么任意

都存在
使得
(定理又称联合逼近定理)

我们考虑开矩体
内的点列
,由无关性知不存在

如果向量

满足
我们将其称作一个
,并且为了方便描述,下向量简记作

首先我们注意到这无穷个点存在聚点

,因此在
附近可以找到长度短于任意正数的向量

现在我们考虑所有的

,假设它们全都是共线的,根据小数部分的性质,我们有:

如果

满足向量关系
,且是一个
,那么

而且

可以充分大,
,当

存在一个

,并且对应存在充分大的
满足
共线,也就是下面的等式:

因线性无关

,那么有
但是因为
是无理数
矛盾!

这样一来,说明任意

足够小,都存在两个
不共线,那么我们不妨要求:

考虑从

开始由这两个向量
生成格点:
首先指出

对于原题

点,存在
使得

因为任意

总存在一个格点的基本平行四边形,使得该点在基本平行四边形内部或边上

而任意这样的一个点到平行四边形顶点距离的最小值不会大于平行四边形的边长最大值(留读),不会大于

因此找到了一个

中的格点满足,又
因此这个点在
范围内,命题得证

因为存在任意大
,因此易知可以要求原题
是一个正整数(用
达成)

无理数,
实数,且非
的形式,那么存在无穷多整数
使得

另外,这个常数是最优的,我们先给出

存在无数组正数解,考察如下:

首先我们有无穷组正解满足

,这只需注意到
对各集合
用抽屉即可

而且由于各

互不相等,当
增大时能得到任意数量的不同的正整数
,并且若

可以要求

是互质的,因为如果最后无穷组解约分到同一个分数,容易推出矛盾

然后找整数

使得
,根据贝祖定理,令
,只需对解作调整即可

这样

现在令

然后

最后做这一代换是因为不能确认
可以任意大,因此用
,其可以确认大于
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值