
本文发表于《数学通讯》2020.7
开号宗旨:为数学教师提供交流、学习、研究的平台,既关注高中数学解题研究,也关注教法和学法研究。文卫星,上海市特级教师。践行“生态课堂”,做到“两尊重”----即尊重知识的发生、发展规律,尊重学生的认知规律;把握“两个度”----思想(哲学或数学)高度和文化厚度。
在《数学教育学报》《数学通报》《中学数学教学参考》等近50家报刊杂志发表论文或文章约330多篇。
专著(代表作):《超越逻辑的数学教学----数学教学中的德育》(2009)、《文卫星数学课赏析》(2012)、《挑战高考压轴题高中数学精
讲解读篇》(1-10版,2009-2019)、《上海高考好题赏析》(2019)。
近年为北京、上海、天津、江苏、浙江、福建、广东、贵州、河南、河北、四川、云南、新疆、宁夏、安徽、山西、重庆等地师生讲学。
欢迎朋友们来稿!来稿请注明真实姓名、工作单位和联系方式。特别欢迎原创文章。只接受word版式的电子稿,文责自负。投稿邮箱:wwxwxh@163.com
摘要:新教材把“正弦、余弦定理”从“三角函数”中分离出来,纳入到“平面向量”中,如此处理既尊重数学史实,又能凸显章节主题。但新教材在“正弦、余弦定理”的结构与内容设计上与“平面向量”的联系还不够紧密,广大教师可以从定理的发现与证明上来建立它们之间的多重联系,从而弥补新教材这一不足。
关键词:平面向量 正弦定理 余弦定理 联系性
最新版的人教版高中数学教材已于2019年下半年在部分省市正式推行使用。在新的课程理念的指导下,新教材按照“四条主线”对高中数学知识进行重新串联、整合、重构,形成了新的主题单元[i]。其中比较引人注目的是新教材把“解三角形”这部分内容移到“平面向量”中,也就是说作为“解三角形”的主要工具“正弦、余弦定理”以后不再属于“三角函数”模块,而是属于“平面向量的应用”这节内容的重要组成。新教材如此处理究竟有何意图、这对于一线教师课堂教学有何启示?下面,笔者谈谈向量视角下的“正弦、余弦定理”教学。
1 “正弦、余弦定理”在新旧教材中的对比从数学发展史看,三角学与任意角三角函数并不是一回事,三角学源于“天文学”,后来主要用于平面三角的测量、测绘工作,于是就有了解三角形的问题;任意角三角函数的诞生主要是为了研究与圆周运动,作为刻画周期现象的一种函数模型。由此可见,把“解三角形”从“三角函数”中割离,融入到“平面向量”,一是为了正本清源,凸显三角函数的本质;二是有助于发挥平面向量在解三角形中的工具作用,彰显平面向量是沟通几何、代数、三角的桥梁地位。因此,新教材如此安排不仅是对数学史实的尊重,而且实现了“三角函数”与“平面向量”的“双赢”。当然,新教材并非把“正弦、余弦定理”直接从旧教材照搬过去,而是做了一些调整与优化。
1.1调整了定理的呈现顺序
新教材先学习余弦定理,再学习正弦定理,其顺序刚好和旧教材相反。究其原因主要是“余弦定理”的推导证明比较容易与“向量数量积”关联,正如教材所说“因为涉及的是三角形的两边长和它们的夹角,所以我们考虑用向量的数量积来探究”,而“正弦定理”涉及的是“正弦”,显然不容易与向量数量积中的“余弦”直接关联。考虑到“正、余弦定理”已经属于“平面向量”的范畴,新教材如此调整是科学合理的。
1.2优化了定理的证明方法
在新旧教材中,“余弦定理”都是运用“向量数量积”进行推导证明的,但在“正弦定理”推导证明中,旧教材利用的是传统的几何法,虽然比较简单直观,但与“平面向量”没有任何关系,因此,为了凸显“平面向量”的工具作用,保持“正、余弦定理”在推导证明方法上统一性,新教材给出了“正弦定理”的向量证法,其原理是利用诱导公式实现正、余弦的相互转换,从而建立“正弦定理”与“向量数量积”之间的联系,具体如下:
教材特别注意以数学核心概念及其反映的数学思想和方法为纽带建立内容之间的联系,从而提高学生对数学的整体认识。虽然,新教材正式把“正弦、余弦定理”归为“平面向量”的麾下,对“正弦、余弦定理”知识结构与内容都进行了一些调整,但在知识的“联系性”方面还是凸显的不够。
2.1“正弦、余弦定理”与“平面向量”的联系不够紧密
“平面向量的应用”这节由三部分内容组成:第一部分是“平面几何中的向量方法”,主要介绍用向量运算来解决平面几何中的位置与数量问题,感受平面向量的工具作用;第二部分是“向量在物理中的应用”,主要是借助向量来促使对物理问题的理解,感受平面向量的物理价值;第三部分就是“正弦、余弦定理”,除了在定理的推导与证明时用到了“平面向量数量积”外,在定理的发现、应用中似乎再也找不到任何平面向量的影子。对比前面两部分内容以“平面向量”为主线贯穿始终、相交相融的特点,“正弦、余弦定理”这部分内容就显得有点“格格不入”。
2.2“正弦定理”与“余弦定理”之间的联系不够清楚
通常情况下,正弦定理适用于解已知对边对角的三角形问题,余弦定理则适用于解已知两边一夹角或三条边的三角形问题,两个定理各行其是,似乎泾渭分明。但实际上这个两个定理只是对三角形边角关系两种不同视角的表征,定理之间其实可以等价转换,因此,两个定理的本质是一致的。但很遗憾,新教材与旧教材一样,还是没有明确两个定理之间的联系,依旧把它们割裂开来分别对待,从而无法让学生形成对两个定理的整体认知。
3 构建“正弦、余弦定理”与“平面向量”的多重联系新教材中的“整体性”设计理念要求对于同一主题内容,注重概念体系的逻辑连贯性、数学思想方法的前后一致性,努力使学生感受到知识发生发展过程的自然而然、水到渠成[i]。尽管新教材在“正弦、余弦定理”内容设计上存在联系性不足的问题,但在实际教学中我们还是要以向量为视角建立知识间的联系,通过创造性的使用教材,展现“正弦、余弦定理”中的向量“味道”。
3.1用向量运算解决接三角形问题
新教材略去了定理的发现过程,直接要求学生探究“在中,三个角A、B、C所对的边分别适a,b,c,怎样用a,b和C表示c?”如此设计指向过于明显,违背新教材一直所提倡的“情境——概念——运用”的教学设计思路。因此,在具体的问题情境中引导学生借助向量知识去发现“正弦、余弦定理”是教学的第一步。其实,正弦、余弦定理的“影子”存在于很多解三角形问题中,只是我们仅仅把它们作为解题过程的组成,而没有加以提炼上升为一般的定理。
✎ 参考文献 [1]章建跃. 核心素养导向的高中数学教材变革(续2)——《普通髙中教科书•数学(人教A版》的研究与编写[J].中学数学教学参考,2019(08):7-13 [1]章建跃. 核心素养导向的高中数学教材变革(续3)——《普通髙中教科书·数学(人教A版》的研究与编写[J].中学数学教学参考,2019(09):5-10

高中数学e点通

长按上方二维码,关注“公众号”
更多精彩请关注

【精彩回顾】
【高考回扣】高考数学回归知识必备
【高考专题】极坐标与参数方程高考题的几种常见题型
【高考专题】高考数学选做题的救神来了!——(极坐标与参数方程、不等式选讲)
圆锥曲线抛物线焦点弦七大模型
【高考讲座】2020年高考命题趋势与答题技巧指导
【高考讲座】2020年高考数学最后20天备考建议与命题趋势
【重磅来袭】学会这十招,高考圆锥曲线轻松拿满分
【小题小做】高考中填空题的解题方法与技巧
【他山之石】75个高考高频考点总结
【重磅来袭】高考数学选择题答题技巧总结
【高考干货】2020年高考最后50天突破函数与导数专题
巧解以数列与函数、不等式等知识相结合的选择题
高中数学优秀教学设计合集
重磅:高考压轴题的解题策略——“以退为进”
【核心素养】数学核心素养如何落实到高三复习课堂
【高考备考】2020届高考数学最后60天备考策略
【高考备考】近几年概率与统计高考题分析与复习建议
【核心素养】核心素养下抽象概念教学的情景设计
【高考助力】精心蓄力 厚积薄发——最后55天学生数学备考建议
【高考助力】020年高考数学复习指导讲座《厚积薄发 迎接挑战》—考前最后阶段的科学安排
【高考专题】二轮复习公开课解决高考中的零点问题
合理定位,精准备考 —艺考生高考复习备考经验交流
【高考备考】2020届高考数学最后60天备考策略
【高考专题】三角函数w特殊题型
【备考策略】精心研究定范围 高考备考定策略
【备考策略】精心研究定范围 高考备考定策略(续上)
【高考专题】三类空间角——线线角、线面角、二面角
【高考助力】突出素养导向 落实五育并举
【手中有料】2020届高考概率与统计问题突破
【高考助力】2020届高考各备考会干货整理
【高考专题】函数零点讨论中的赋值问题
【转角&破局】2020届高考数学二轮备考策略
【高考专题】从泰勒展开解析导数本质
【专题突破】高中立体几何入门学习的障碍及解决策略
【高考真题】导数压轴之同构式(2)
【课堂教学】单元视域下的起始课教学
【导数压轴】同构式的三“生”三“释”
【高考助力】解析几何的高考情结
【高考真题】法向量的夹角和二面角的夹角何时相等?
推荐:艺术生备考同课异构课堂视频、课件及教学设计
【核心素养】核心素养视角下《平面向量》单元教学的实践与思考
华东师大博导汪晓勤教授:基于数学史的数学探究活动设计课例分析
一个经典的“说题”案例对高三数学解题教学的启发
【重磅来袭】新评价、新课程、新理念下“ 强化深度思考 落实精准讲练”
【重磅来袭】新评价、新课程、新理念下“ 强化深度思考 落实精准讲练”(接上期)
【一题多解】一题多解专题:已知函数的单调性求参数范围问题
【高考助力】回归课本为高考备考找到一个有力的支撑
【高考真题】外接球问题攻略——二轮复习微课
【高考助力】核心素养理念下全国卷高考数学命题特点与复习教学建议
【高考备考】数学核心素养之运算素养下的解析几何高考复习
深度好文|用通性、通法去解导数压轴题----全国理数(1)卷近三年导数题研究及2020年导数题预测
【高考助力】2020年高考数学命题趋势与备考建议
【高考专题】高考导数压轴题热点与难点6方向
【论文分享】“存在”、“任意”对对碰
【高考助力】从高考阅卷看如何备考
往期推荐
文卫星:新教材必修一每课讲与练 第三讲 集合的运算(训练篇)A
王芝平:圆锥曲线的一组新定值
查晓东、金沛阳:割线斜率取值范围问题再探究
文卫星:新教材必修1 每课讲与练 第3解集合的运算(精讲篇)
钟萍:HPM视角下高三数列复习课的教学设计与反思
白志峰:高三第一轮复习,孰轻孰重
2020年杭州市初中数学课堂教学展示评审活动优秀课例展示(十七)
朱永厂:让探究成为一种习惯 ——以一道向量高考题为例
2020年杭州市初中数学课堂教学展示评审活动优秀课例展示(十九)
文卫星:高三数学开学第1课开场白两篇
文卫星:高一数学第一课(引言)教学实录
文卫星:新教材必修1 每课讲与练 第2讲集合的关系(精讲篇)
王小国:基于结构、合理联想构造——致王芝平老师公众号的两道题
文卫星:必修1 第1讲 集合的概念(训练篇)B、C组答案
王芝平:一道俄罗斯数学竞赛题的简单解法
文卫星:必修1 第1讲 集合的概念(训练篇)C组+A组答案
王芝平:数学解题要本质、自然、规范、简单 ——数学通报第2548问题的一个新解法
王芝平:再用“参数范围迷人眼,必要充分常相宜”解题
文卫星:新教材必修1 每课讲与练 第1讲 集合的概念(精讲篇下)
徐海东:解题回归定义
文卫星:新教材必修1 每课讲与练 第1讲 集合的概念(精讲篇上)
于莺彬、刘海龙:高中数学情境创设的策略探究
李昌官:素养为本的高中数学单元起始课教学 ——兼谈“平面向量及其应用”单元起始课教学
李昌官:素养为本的高中数学单元起始课教学 ——兼谈“平面向量及其应用”单元起始课教学
王怀学、翟洪亮:基于数学核心素养下科学预设与精准教学实践的思考
“写作学习”视角下的“好记性不如烂笔头”史嘉:
吕增锋:集体备课的核心:理解教材 ——以“平面向量的实际背景及基本概念”为例
更多内容请查看公众号菜单栏!