python数据可视化的作用_python功能笔记——数据可视化

python数据可视化

pip install matplotlib

引入:

import matplotlib.pyplot as plt (大量接口都在这里边)

绘制线图:

x=[1,2,3,4] (指定X轴)

y=[4,5,6,7] (指定Y轴)

plt.plot(x,y) (将数组传入,绘制线图)

plt.plot(x,y,label='线的名字') (如果想要显示线的名字,直接在函数中传入)

plt.legend(loc=0) (数字1-10来指定显示的位置)

plt.show() (显示出来)

(想要同时显示多个线图,只需要多次指定plt.plot(x1,y1)即可)

plt.xlabel('X轴名字') (指定X轴名字)

plt.ylabel('Y轴名字') (指定Y轴名字)

plt.title('这个线图的名字') (指定线图名字)

绘制条形图:

x=[1,2,3,4,5] (指定X轴)

y=[4,5,6,7,9] (指定Y轴)

plt.bar(x,y) (绘制条形图)

plt.show() (显示出来)

plt.axis([0,12,0,7]) (自己指定X轴和Y轴范围,四个参数分别为X轴从0到12,Y轴从0到7)

或者使用xlim()和ylim()函数功能一样

根据数据量的多少绘制条形图

import numpy as np

x=np.random.randint(1,100,100) (产生1到100的100个随机整数)

bins=[0,10,20,30,40,50,60,70,80,90,100] (指定划分范围)

plt.hist(x,bins) (根据指定的范围划分在此范围内有多少符合的数据)

plt.hist(x,bins,rwidth=0.7) (使条形图有间距)

plt.show()

绘制散点图:

x=np.random.randint(1,10,50) (产生随机数)

y=np.random.randint(1,10,50)

plt.scatter(x,y) (绘制散点图,也可以同时生成多组数据)

plt.scatter(x,y,color = 'r') (指定颜色)

plt.show()

面向对象:

绘制散点:

fig,ax=plt.subplots() (初始化画布和图像)

ax.scatter(x,y)

plt.show()

绘制饼图:

label='A','B','C','D' (设定模块标签)

size=[12,30,45,10] (设定比例)

fig,ax=plt.subplots()

ax.pie(size,labels = label) (绘制饼图)

ax.pie(size,labels = label,autopct='%1.1f%%') (显示百分比)

ax.pie(size,labels = label,shadow=True) (显示阴影)

ax.pie(size,labels = label,startangle=90) (设定起始角度)

ax.pie(size,labels = label,explode=explode) (突出显示一个元素)

要使用这个选项,首先要定义explode变量

explode=(0,0.1,0,0)

ax.axis('equal') (让饼形图正起来显示)

plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值