紧接着将推理积分表当中59-82共计24个公式。所有积分表推理见下。
(更新于:2020/10/18,修改了几处微妙的错误)
积分表公式推理zhuanlan.zhihu.com内容概要
★含有
★含有
★含有
★总结
一、含有的积分
59.
60.
令
且
原式
由辅助三角形,得.
原式
61.
62.
63.
代入积分表59、67中的结果可得.
原式
64.
令
且
原式
65.
①当0<x<a时,令
原式
根据辅助三角形得,
故原式
②当-a<x<0时,由上述可知.
原式
综上所述,该不定积分结果为
原式
66.
令
且
原式
67.
令
原式
由辅助三角形,得.
故原式
68.
令
原式
69.
70.
原式
代入积分表67、68中的结果可得.
原式
71.
①当0<x<a时,令
原式
②当-a<x<0时,由①可知.
原式
综上所述,该不定积分结果为
原式
72.
二、含有的积分
73.
首先将不定积分分母变形,可得.
要使该不定积分由意义,只有使得根式部分恒大于0.
因为
原式
由积分表公式45可得.
74.
由积分表公式53可得.
75.
76.
首先将不定积分分母变形,可得.
要使该不定积分由意义,只有使得根式大于0.
因为
定义域为
原式
由积分表公式59可得.
77.
由积分表公式67可得.
78.
三、含有或的积分
79.
令
原式
其中
其中
移项可得
故原式
将
原式
80.
令
原式
对于
故原式
将
原式
注:画个辅助三角形就能实现反三角函数转化.
81.
原式
令
因为b>a,故
原式
82.
原式
令
因为b>a,故
原式
其中
将以上结果代入原式,得
其中
原式
四、总结
本次积分推理没有什么过多的技巧。
若你有幸看到这一系列文章且对你有帮助,请默默收藏一下或转发给身边需要的人。
文中若有错误的地方,请及时指出错误,本人表示万分感谢。
In The End.
Thanks for your reading!