常数除以0的极限是什么_第六讲 极限的运算法则

写在前面的话:

国庆假期浪完啦~马上要上班了,大家也快开学了,祝福祖国,也祝福大家!

这一讲主要讲的是函数极限的运算法则,当然也适用于数列极限咯~大家好好学习吧。

如果有打错字的地方还请积极提出来,以方便大家阅读。如果你是新来的小伙伴,还请从头看我的专栏文章呦,重点理解极限的定义,打好基础,往后的学习过程才不会痛苦。

我总结的最好的学习方法就是两个字:反复,反复琢磨。不要相信自己的记忆力,因为记了会忘。要相信自己的理解力,反复琢磨,大家都是可以的。

以下运算法则对

都成立:

法则一:如果

下面我们根据无穷小和极限的关系(戳我了解)来证明极限的运算法则,

为极限推出
等于
加上一个无穷小量
;

为极限推出
等于
加上一个无穷小量

由于

是无穷小,所以两个无穷小量之和
自然也是无穷小;另外
视为 常数
和无穷小
的乘积,是一个无穷小,所以
也是无穷小。

再由“有极限的函数”与无穷小的关系,可知

有极限且极限是
,即
。证毕!

比如:

法则二:如果

证明:

为极限推出
等于
加上一个无穷小量
;

为极限推出
等于
加上一个无穷小量

从而

由无穷小的性质(戳我了解),

都是无穷小,从而
是无穷小,由“有极限的函数”与无穷小的关系可知,
有极限且极限是
,即
。证毕!

比如:

注:这个法则由两个推论:

(1)如果

为常数,则

(2)如果

为正整数,则

法则三:如果

,则

证明:

为极限推出
等于
加上一个无穷小量
;

为极限推出
等于
加上一个无穷小量

,等式两边同时减去

由于

,根据函数极限的局部保号性(戳我了解),存在
的某去心邻域,当
在该邻域时,有
,从而

,所以
是一个有界函数,而
是一个无穷小量,因此
是一个有界函数与一个无穷小量的乘积,结果也是无穷小。

由无穷小与“有极限的函数”的关系(如果函数可以表示成常数和一个无穷小之和,那么这个常数就是函数的极限。)可知,因为

,所以
有极限且极限为
,即

例题:

1.

解:

2.

(分母极限不为零)。

解:

注:像例题2中,分子和分分母皆为一个多项式的函数,称为有理函数(戳我了解)。在有理函数中,当分母的极限不等于

时,函数的极限就等于分子的极限除以分母的极限,而分子分母都是多项式,所以求极限的时候可以直接把
直接代入自变量
的位置。总结如下:

① 如果

次多项式,即
,

那么

② 若有理函数

,其中
是多项式,则
。如果

3.

(分母极限为零,分母可因式分解)

思路:在极限的运算中,商的运算法则要求分母的极限不能为

,所以此题不能直接运用商的运算法则。故需恒等变换,将分母因式分解。

解:

4.

(分母极限为零,分母不可因式分解)

思路:分母极限为零,还是不可直接用商的运算法则。而分母为一个二次质因式(戳我了解),不能进一步因式分解。所以我们想办法,先求该式的倒数,看看结果如何。

解:原式倒数

,我们知道,以
为极限的函数是无穷小量,故
时的无穷小,它的倒数是
时的无穷大,即
(亦即极限不存在)。

5.

(分子分母皆无极限)

思路:我们知道,在运用和差积商运算法则的时候,要求分子分母极限皆存在,但是此题分子分母极限显然不存在,所以不可用商的运算法则。故需在四则运算之前对函数进行恒等变换:把分子和分母同时处以

的最高次幂(即
)。

解:

6.

(分子分母皆无极限)

解:

7.

(分子分母皆无极限)

错解:

正解:和例题4一样,先求倒数

时的无穷小,所以它的倒数
时的无穷大,故
(亦即极限不存在)。

对以上有理函数,当

时,求极限我们进行如下总结


8.

解:此题分母极限为零,故不能直接运用商的运算法则,先进行因式分解。

9.

解:在此题中因为极限符号下标是“

”而非“
”所以
是变量,把
看作常量,这一点要搞清楚。因为分母极限为
,所以不能直接运用商的运算法则。先对分子进行恒等变换。

10.

解:我们说过函数极限的运算法则同样适用于数列。但是此题中分子分母皆无极限。所以先把分子分母同时除以

的最高次幂

11.

解:此题中分子分母皆无极限,所以不能直接用商的运算法则。那么我们可不可以把分子拆开得到

,从而运用极限和的运算法则呢,显然不能,因为
时,是无穷多项相加,而不是有限项相加。只有有限项极限相加才能运用和的运算法则!!所以,我们需用等差数列前
项和的公式(戳我了解)对分子进行恒等变换。

12.

解:此题中分子分母皆无极限,所以不能用商的运算法则。所有需进行恒等变换。

法则四:复合函数的极限运算法则:设

,且
,但在
的某去心邻域内,
。又
,则复合函数
时有极限,且

下面我们来证明该法则,我们要证明的是

证明:由于

,根据极限定义,
,存在
,使当
时,
;又因为
,对
,存在
,使当
时,

又根据条件:在

的某去心邻域,即
内,
时,有
,从而
。把带有下划线的文字连成一句话:对任意给定的
,存在
,使当
时,
。故证毕!如果文字还有不太明白的请看下面视频:
知乎视频​www.zhihu.com

法则五:如果

,而
,则

(简单来说,如果函数大,自变量在同一个变化过程中,极限也大。)

证明:设

,根据本文中的法则一(差的极限法则),可求
的极限:
,有根据极限的保号性定理(戳我了解),因为
,所以
,即
。证毕!
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值