两个向量平行满足什么_向量的向量积

本文深入探讨了向量的相关知识,包括向量的定义、数量积、向量积、三向量混合积以及双重向量积。详细解释了这些概念的定义、性质和运算规则,特别是向量积与数量积在几何和代数上的含义,以及它们在判断向量平行、垂直和平面内的关系等方面的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

向量,是我们初高中学习的知识。我们也学习过向量积。我们今天来深入了解一下向量的各种积

1.什么是向量

在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。

2.向量积有哪些

  • 数量积
  • 向量积
  • 三向量混合积
  • 双重向量积

1.数量积

数量积定义:已知两个非零向量a,b,作OA=a,OB=b,则∠AOB称作向量a和向量b的夹角,记作θ并规定0≤θ≤π

定义:两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b

ab不共线,则

74fb943055e792d8086c924115b0312c.png


ab共线,则

b7a8b83ce63a5d095b7690073c405785.png

向量的数量积的坐标表示:a·b=x·x'+y·y'。

向量的数量积的运算律

交换律:a·b=b·a

关于乘法的结合律:(λa)·b=λ(a·b)

分配律:a+bc=a·c+b·c

向量的数量积的性质

a·a=|a|^2。

ab〈=〉a·b=0。

|a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)

向量的数量积与实数运算的主要不同点

1.向量的数量积不满足结合律,即:(a·bca·(b·c);例如:(a·b)²≠·

2.向量的数量积不满足消去律,即:由a·b=a·c(a0),推不出b=c

3.|a·b|与|a|·|b|不等价

4.由 |a|=|b| ,不能推出a=b,也不能推出a=-b,但反过来则成立。

2.向量积

7fef499c9329148d2ed15922d221c5dc.png

定义:两个向量ab的向量积

2518e4a1cb2f44e3e3ef1d64f82c395d.png

https://baike.baidu.com/pic/%E5%90%91%E9%87%8F/1396519/0/58c3acb7d9fe5eba31add18f?fr=lemma&ct=single 向量的几何表示
(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若ab不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈ab〉;a×b的方向是:垂直于ab,且aba×b按这个次序构成右手系。若ab垂直,则∣a×b∣=|a|*|b|(此处与数量积不同,请注意),若a×b=0,则a、b平行。向量积即两个不共线非零向量所在平面的一组法向量。

运算法则:运用三阶行列式

a,b,c分别为沿x,y,z轴的单位向量

A=(x1,y1,z1),B=(x2,y2,z2),则

d89d57682aad3112d04df6922a6e27ef.png

向量的向量积性质:

|a×b|是以ab为边的平行四边形面积。

a×a=0

a平行b〈=〉a×b=0

向量的向量积运算律

a×b=-b×a

ab=λ(a×b)=a×(λb)

a×(b+c)=a×b+a×c.

(a+bc=a×c+b×c.

上两个分配律分别称为左分配律和右分配律。在演算中应注意不能交换“×”号两侧向量的次序。

:向量没有除法,“向量AB/向量CD”是没有意义的。

3.三向量混合积

定义:给定空间三向量abc,向量ab的向量积a×b,再和向量c作数量积(a×bc, https://baike.baidu.com/pic/%E5%90%91%E9%87%8F/1396519/0/5202e5f24f90c15db17ec575?fr=lemma&ct=single

355f7b11cdad1078642c0de08423abe2.png

https://baike.baidu.com/pic/%E5%90%91%E9%87%8F/1396519/0/5202e5f24f90c15db17ec575?fr=lemma&ct=single 向量的混合积
所得的数叫做三向量abc的混合积,记作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×bc

混合积具有下列性质:

1.三个不共面向量abc的混合积的绝对值等于以abc为棱的平行六面体的体积V,并且当abc构成右手系时混合积是正数;当abc构成左手系时,混合积是负数,即(abc)=εV(当abc构成右手系时ε=1;当abc构成左手系时ε=-1)

2.上性质的推论:三向量abc共面的充要条件是(abc)=0

3.(abc)=(bca)=(cab)=-(bac)=-(cba)=-(acb)

4.双重向量积

给定空间的三个向量a,b,c,如果先做其中两个向量a,b的向量积a×b,再做所得向量与第三向量的向量积,那么最后的结果仍然是一个向量,叫做所给三向量的双重向量积,记做:(a×bc

性质:

(a×bc=(a·cb-(b·ca

a×(b×c)=-(b×ca=(a·cb-(a·bc

关系式

给定空间内四个向量abcd,则这四个向量之间满足如下关系:

4f40494cda7d3374a00f74145ac21dd9.png

证明:

由混合积的性质可知

bb8904bce685f088c0432fd064cf4359.png


(即把c×d看成一个新的向量e,利用性质(a×be=a·(b×e))

再根据二重向量积的性质可知

fd7fea3324e64c638d303f6043a03cf1.png

该公式可用于证明三维的柯西不等式

400f64add34570289f841b17c4dee30b.png

证明:令公式中a=cb=d,则:

5ccbf58e23480eac8a8a7b54271b9c97.png

54ce67c076497036f29bf5ccf68673d7.png


,那么:

2704c7032596b9b49a0c44df6505140a.png

400f64add34570289f841b17c4dee30b.png

等号成立的条件是

c4fb0fa6486062ef3f4591b48109e5f3.png


,即ab共线(

96d228cfcd384bcc315e045c2761a6b7.png


b=0

两个向量构成的平行四边形的面积公式

e1eecb87608cece12e2c8f2eca4ea1d9.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值