怎么根据矩阵判断极大无关组_证明列秩的矩阵右乘它的转置矩阵的秩不变

证明列秩的矩阵右乘它的转置矩阵的秩不变

看到这样的题目:

矩阵A是列满秩矩阵,证明

仍然是列满秩的。

这个要证明的事情,前面的"A是列满秩矩阵“,可以等价为其它的说法。比如:

矩阵Amn列,它的秩是n

矩阵A中有一个n阶子式不为0。

矩阵A的所有列向量构成的列向量组的极大无关组的个数是n

矩阵A的所有列向量构成的列向量组是列满秩的。

对于列满秩矩阵,它的行数m一定不小于它的列数n,否则不可能存在和它的列数一样的子式。

假设An个列向量为

,根据题意它们是线性无关的。

可以将这

等价于另
n个线性无关的向量组
。就是说,存在
,使得

写成矩阵形式,就是

因此假设上式左边构成的按列分块矩阵为B,右边的那个系数构成的n阶方阵是P, 则上式其实可以写成

B=AP

B或者说AP列满秩的充分必要条件,是A列满秩且P可逆。我们现在要寻找一个合适的P。是将一个满秩的列向量组线性变换为另一个满秩的列向量组,我们怎么做这个变换比较好呢?

一个满秩的列向量组张成一个n维线性空间,这个列向量组就可以做为这个线性空间的基,但是这样的基我们必须讨厌。我们喜欢相互正交的,长度为1的基,这叫正交单位向量组,或者称为标准正交基。因此寻找P使得B=AP的列向量组是正交的,且长度是1的。

当然我们要想起施密特正交化方法。因为根据施密度正交化方法,任何一个满秩的向量组,必可存在一个与之等价的单位正交向量组。换句话就是可以给出这样的定理:

定理1 任给列满秩矩阵A,必存在方阵P使得

的列向量组为单位正交向量组。

同时易证:

定理2 一个由单位正交向量组作为列向量构成的一个列满秩矩阵B,必有

B的转置乘上B等于单位矩阵。

因此

为可逆方阵。

上面最右边三个方阵相乘的行列式不等于0,则必有

不等于0,所以
是满秩的。

当然我上面的证法有一些罗索,许多定理应当是已知的,而施密特正交化办法其实是不用去背诵什么这个方法的公式的,只要相信任何满秩的向量组必可单位正交化即可。

不管怎么说,在线性代数的任何证明题中,我是憎恨不得不使用省略号的证明的,上面为了讲道理,不得不用许多省略号。但是,又不知道一个证明题必须假设受试者已经知道多少定理,可以假设哪些定理算是已知的,所以改起来也困难。

例如,上面的证明题,严格不用省略号,也许应当这样证:

证明题:假设矩阵A为列满秩,试证明

也列满秩。

证:因为A列满秩,必存在可逆方阵P使得

B=AP 满足

(
E为单位矩阵)

为可逆矩阵,即

为可逆矩阵,则上述三个相乘的方阵均为可逆,所以

可逆,即
列满秩。

证毕。

那么,上面的证法是否太快?我还真不太清楚。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值