日文转换为罗马音_【文豪野犬】太宰治的殉情之歌日文歌词带罗马音

本文介绍了一首日文歌曲《心中》的罗马音转换方法及注意事项,提供了多个版本的罗马音对照,并解释了一些发音特点。对于喜欢日本音乐但不懂日语的朋友来说,本文提供了一个实用的参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

心中は一人じゃできない〜

sinzyuu/shinchuu/shinjuu ha hitori zya/ja deki nai

WOW WOW

でもでも、2人ならできる~︎︎︎

demo demo futari nara dekiru

心中〜心中心中〜

[略]

注意事项:

①本人不会日语,也搞不懂什么黑本式训令式,因此把转换出来的罗马音都标出来了。具体使用的转换网址参见:

有没有什么可以把日文歌转换成罗马音的网站?​www.zhihu.com

②这里应该是地牢版本的,此外还有一个武侦沙发上的版本,对应把第一句的じゃ(zya/ja)换成では(de ha),也就是:

しゅんじょうは、

syunzyou/[shu n jo u] ha

ひとりでは、

hitori de ha

できない。

deki nai

这个全平假名版本来自:

文豪野犬动画中太宰治唱的殉情歌(x)日文平假名?_百度知道​zhidao.baidu.com
fe3c640131a57b618a1e9bacc761dcc6.png

p.s.由于是全平假名无汉字版本,因此 心中(しゅんじょう,殉情)的罗马音种类更多了,然而咱也不会日语,咱也不敢问,只能都放这儿任君取用。

③r发l音这种常识就不说了。hotori中的to应该是浊化的。这里面有两个地方需要注意(都标了粗体):一是ha在这里都读wa;二是fu的读音在日语中接近hu(因此在这首歌的空耳都变成了“虎”)。具体原因请自行百度。

④至于调子,请拿出和mamo一样即兴的勇气来!不用管自己是否五音不全或者不在调上!

最后唔……祝大家都能如愿和哒宰殉情……?诶嘿[歪头]

### MNIST 手写数字识别实现方法 #### 加载必要的库 为了构建并运行一个简单的卷积神经网络(CNN),用于MNIST手写数字分类,首先需要加载一些基本的Python库以及PyTorch框架。 ```python import torch from torchvision import datasets, transforms from torch.utils.data import DataLoader import torch.nn as nn import torch.optim as optim ``` #### 准备数据集 MNIST 数据集包含70000张灰度图像,每幅图像是28×28像素大小,代表了从0到9十个类别的手写字体。这些图片被划分为两个主要部分:一个是拥有60000个样本的训练集合;另一个则是含有10000个实例的测试集合[^3]。 对于输入的数据预处理非常重要,在这里采用标准化操作来调整图像数值范围至\[0, 1\]之间,并将其转换成Tensor对象以便于后续计算: ```python transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]) train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) batch_size = 64 train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) ``` #### 构建模型结构 定义了一个非常基础版本的CNN架构,它包含了两层卷积层(Convolutional Layer)加上一层全连接层(Fully Connected Layer)[^1]。 ```python class SimpleCNN(nn.Module): def __init__(self): super(SimpleCNN, self).__init__() # 定义卷积层 self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2) self.pool = nn.MaxPool2d(kernel_size=2) self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1, padding=2) # 全连接层 self.fc1 = nn.Linear(32 * 7 * 7, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 32 * 7 * 7) x = torch.relu(self.fc1(x)) x = self.fc2(x) return x model = SimpleCNN() print(model) ``` #### 训练过程 设置损失函数为交叉熵(Cross Entropy Loss),优化器选用随机梯度下降法SGD。通过迭代整个训练集多次更新权重参数直到达到满意的性能指标为止。 ```python criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01) num_epochs = 5 for epoch in range(num_epochs): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print(f'Epoch [{epoch + 1}/{num_epochs}], Step [{i + 1}], Loss: {running_loss / 100:.4f}') running_loss = 0.0 print('Finished Training') ``` #### 测试评估 完成上述步骤之后就可以利用已经训练好的模型来进行预测工作了。此时应该使用之前从未见过的新数据即测试集中保存下来的那部分样本来检验最终效果如何。 ```python correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = 100 * correct / total print(f'Test Accuracy of the network on the 10000 test images: {accuracy}%') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值