Resnet残差网络学习

本文探讨了深度学习中网络退化问题,即随着网络深度增加,性能反而下降的现象。提出残差网络作为一种解决策略,通过残差块允许网络更容易学习恒等映射,从而缓解退化问题。残差块通过快捷连接直接将输入与输出相加,使得网络能够更好地优化。实验表明,残差网络在深度增加时仍能保持良好的表现,证明了这种方法的有效性。
摘要由CSDN通过智能技术生成
  • 动机:深度学习过程中,网络层数增加面临三个问题——计算资源的消耗梯度消失/爆炸网络退化。计算资源的消耗问题可以通过GPU集群来解决,梯度消失和爆炸的问题很大程度上已经被标准初始化/中间层正规方法控制了,这些方法使得深度神经网络可以收敛。网络退化指的是:随着网络深度增加,网络的表现先是逐渐增加至饱和,然后迅速下降。网络退化不是过拟合造成的。它是不符合常理的,因为假设一个K层的目前最优网络f,那么可以构造一个更深的网络,它的最后几层是网络f的第K层输出的恒等映射(Identity Mapping),就可以取得和f一致的结果,也许K还不是最优的层数。那么更深的网络就可以取得更好的结果。总而言之,与浅层网络相比,更深的网络的表现不应该更差。因此,一个合理的猜测就是,对神经网络来说,恒等映射并不容易拟合。也许我们可以对网络单元进行一定的改造,来改善退化问题?这也就引出了残差网络的基本思路(参考自残差网络解决了什么

  • 残差块:残差单元可以以跳层连接的形式实现,即将单元的输入直接与单元输出加在一起,然后再激活。因此残差网络可以轻松地用主流的自动微分深度学习框架实现,直接使用BP算法更新参数。

3 Deep Residual Learning

3.1 Residual Learning

  将H(x)视为一个潜在映射(H就是期望拟合的特征图),由几个堆叠的层(不一定是整个网络)进行拟合,其中x表示这些层中的第一层的输入。如果假设多个非线性层可以渐近逼近复杂函数,那么就相当于假设它们可以渐近逼近残差函数,即H(x)-x(假设输入和输出的维度相同)。因此,比起期望堆叠层近似于H(x),我们更期望显式地让这些层近似于残差函数F(x)=H(x)-x。原来的函数因此变成

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值