残差网络Residual Networks-残差网络的创建、训练、测试、调参

本文介绍了残差网络(ResNet)的背景,为解决深度学习中的梯度消失问题,通过引入恒等映射和残差块结构。详细解释了残差网络的工作原理,并在Keras中实现了一个50层的ResNet模型,包括创建、训练、测试和调参的过程。实验证明,模型能够有效进行图像分类,但存在过拟合问题,未来可能需要通过正则化或数据增强等手段提高泛化能力。
摘要由CSDN通过智能技术生成

残差网络的创建、训练、测试、调参加粗样式

在Keras中实现残差网络模型的创建,并通过模型来实现对图片的分类。

残差网络的预备知识

  • 网络越深越好?
    随着网络层级的不断增加,模型精度不断得到提升,而当网络层级增加到一定的数目以后,训练精度和测试精度迅速下降,这说明当网络变得很深以后,深度网络就变得更加难以训练了。在不断加神经网络的深度时,模型准确率会先上升然后达到饱和,再持续增加深度时则会导致准确率下降。
    在这里插入图片描述
  • 深层网络的优点与缺点?
  • 当使用的深度神经网络层数越来越深,非线性函数的嵌套越来越多,实现的函数越来越复杂,即提取到了更抽象的图像特征(在比较浅的层提取到边缘特征,在深层中提取到了更多复杂的特征),虽然实现了对图片更精确的分类,但与此同时也产生了问题:梯度消失
  • 在深层神经网络中,梯度信号往往会快速降到0,使梯度优化变得很慢。更具体一点,在反向传播过程过程中,每经过一层,梯度就要乘以权重,层数越多,梯度就会议指数级的速度降到0,。或者,另一种情况,梯度爆炸。
  • 神经网络在反向传播过程中要不断地传播梯度,而当网络层数加深时,梯度在传播过程中会逐渐消失(假如采用Sigmoid函数,对于幅度为1的信号,每向后传递一层,梯度就衰减为原来的0.25,层数越多,衰减越厉害),导致无法对前面网络层的权重进行有效的调整。

残差网络正是为了解决这个问题。

  • 残差网络为什么能解决梯度消失的问题?

  • 假设现有一个比较浅的网络(Shallow Net)已达到了饱和的准确率,这时在它后面再加上几个恒等映射层Identity mapping,也即y=x,输出等于输入),这样就增加了网络的深度,并且起码误差不会增加,也即更深的网络不应该带来训练集上误差的上升。

  • ResNet引入了残差网络结构(residual network),通过这种残差网络结构,可以把网络层弄的很深(据说目前可以达到1000多层),并且最终的分类效果也非常好。

  • 残差网络的结构
    左边是普通的结构
    左边是普通的结构,右边是残差网络的结构。
    在这里插入图片描述

  • 在上图的残差网络结构图中,通过“shortcut connections(捷径连接)”的方式,直接把输入x传到输出作为初始结果,输出结果为H(x)=F(x)+x,当F(x)=0时,那么H(x)=x,也就是上面所提到的恒等映射。于是,ResNet相当于将学习目标改变了,不再是学习一个完整的输出,而是目标值H(X)和x的差值,也就是所谓的残差F(x) := H(x)-x,因此,后面的训练目标就是要将残差结果逼近于0,使到随着网络加深,准确率不下降。
    在这里插入图片描述
    经过“shortcut connections(捷径连接)”后,H(x)=F(x)+x,如果F(x)和x的通道相同,则可直接相加,那么通道不同怎么相加呢。上图中的实线、虚线就是为了区分这两种情况的:

  • 实线的Connection部分,表示通道相同,如上图的第一个粉色矩形和第三个粉色矩形,都是3x3x64的特征图,由于通道相同,所以采用计算方式为H(x)=F(x)+x

  • 虚线的的Connection部分,表示通道不同,如上图的第一个绿色矩形和第三个绿色矩形,分别是3x3x64和3x3x128的特征图,通道不同,采用的计算方式为H(x)=F(x)+Wx,其中W是卷积操作,用来调整x维度的。

残差网络的创建

残差网络中使用的标准恒等映射模块:
在这里插入图片描述
本文使用的恒等映射结构:
在这里插入图片描述
路径=主要路径+捷径连接

  1. 主要路径的第一部分:
  • CONV2D:卷积核1x1,步长=1,padding=‘valid’
  • BatchNormalization: axis=3,对通道维度做归一化
  • 激活函数:ReLU
  1. 主要路径上的第二部分:
  • CONV2D:卷积核fxf,步长=1,padding=‘same’
  • BatchNorm: axis=3
  • 激活函数:ReLU
  1. 主要路径上的第三部分:
  • CON2D:卷积核1x1,步长=1,padding=‘valid’
  • BatchNorm: axis=3
  • 注意:这一部分没有激活函数
  1. 主要路径上的第四部分:
  • 捷径连接
  • 应用激活函数:ReLU

残差网络恒等映射的代码实现

实用场景:输入与输出能够互相直接相加。捷径部分(输入X)与输出部分(F(X))维度能够匹配,直接相加。

# GRADED FUNCTION: identity_block

def identity_block(X, f, filters, stage, block):
    """
    Implementation of the identity block as defined in Figure 4
    
    Arguments:
    X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
    f -- integer, specifying the shape of the middle CONV's window for the main path
    filters -- python list of integers, defining the number of filters in the CONV layers of the main path
    stage -- integer, used to name the layers, depending on their position in the network
    block -- string/character, used to name the layers, depending on their position in the network
    
    Returns:
    X -- output of the identity block, tensor of shape (n_H, n_W, n_C)
    """
    
    # defining name basis
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'
    
    # Retrieve Filters
    F1, F2, F3 = filters
    
    # Save the input value. You'll need this later to add back to the main path. 
    X_shortcut = X
    
    # First component of main path
    X = Conv2D(filters = F1, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)
    X = Activation('relu')(X)
    
    ### START CODE HERE ###
    
    # Second component of main path (3 lines)
    X = Conv2D(filters = F2, kernel_size = (f, f), strides = (1,1), padding = 'same', name = conv_name_base + '2b', kernel_initializer = glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis=3, name = bn_name_base + '2b')(X)
    X = Activation('relu')(X)

    # Third component of main path (2 lines)
    X = Conv2D(filters = F3, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2c', kernel_initializer = glorot_uniform(seed=0))(X)
    X = BatchNormalization(axis=3, name = bn_name_base + '2c')(X)

    # Final step: Add shortcut value to main path, and pass it through a RELU activation (2 lines)
    X = layers.add([X, X_shortcut])
    X = Activation('relu')(X)
    
    ### END CODE HERE ###
    
    return X

测试恒等映射

tf.reset_default_graph()

with tf.Session() as test
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值