两边同时取对数求复合函数_高中数学题型分析:对数运算

本文详细介绍了高中数学中的对数概念、性质推导、运算训练及对数方程,强调理解“底数”、“指数”、“真数”的基础概念。通过大量的训练题,帮助学生巩固对数运算知识,为后续的函数学习打下基础。此外,还提及了对数在解析式中的应用,并推荐了两套题型训练资料供学生进一步练习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

41620b33596561a0d7798ce0306a5c54.png

对数运算

对数,作为高中一个新的概念,对数运算也是新的运算内容,许多刚进高中的同学,常会受到对数概念的模糊与不清晰困扰,也为后续的指数函数与对数函数学习上,带上一定的影响,从而造成对高中函数理解的困难。

今天,我们同学对对数概念的引入、性质推导、运算推导,附加大量训练,希望对同学们在学习对数运算上有所帮助。

对数概念的引入

5ab9b3141da5521e4302992e9b6d5f18.png
fae5e2a512231c94a7b97a746d6f10bf.png

同学们,可以看看,以上是最基础的指数运算,而对数概念概念的出现,是为了解答指数中的指数幂而出现的一种运算,在这里同学们一定要把握“底数”、“指数”、“真数”的基础概念。

3168c1be66e884ffba26b445f28fbc74.png

对数符号“log”的引入,切记“log”为书写对数的符号,我们也可以看到,通过对数可以成功分析指数幂未知的情况,有点必须注意的是,对数是一个确定的值,有大小的区别。

其次,要注意2种特殊的底数,一种是以10为底的对数的表达形式,一种是以e为底的对数的表达形式,切记这两种表达以后都以lg、ln为标识,不需要换回的。

对数性质的推导

e1d6f279e0085d3ae099d6ecd5fbf6d3.png
ad247e425db372d9dbf7b39f0963963f.png

利用指数运算中的,特殊情况,分辨好“底数”、“指数”、“真数”的基础概念,为对数性质进行推导。

30493f56bd090275f0d0615b1bba8905.png

对数运算本质是一种运算,所以只要等式,两边同时取对数是成立的,所以随着性质的出现,我们可以推导出指数幂为对数形态的一条新的性质,这也是许多同学比较难理解,必须注重理解好“底数”、“指数”、“真数”的基础概念。

对数性质的训练

021e6d4901f05b51a7dfd0186ccc8ff9.png
5afaaad09c96bc9afbf495107d644a08.png
6cc00c73a91f8b88152685e670e7eea2.png

对数性质的推导

aa264b40da0cc6e33e68b1b8601d8cd3.png
0deb10add97c2854026a7254656b8610.png

我们可以看到,对数运算性质,其实来源于指数运算的基础,所以,在理解对数运算的性质前提下,必须熟悉指数运算的内容。

847fe016302ce2088cbb1ae385eb677e.png
eda10e4596c2a98ecfeddc89728da3b7.png

利用指数运算另外两条性质,我们分析出新的两条对数运算性质。

对数运算的训练

b450df548ca7b3cad21b0a156f4268aa.png
b1ab1626552f0c5fded552754b963d7c.png
72e2fe872aada2053e73fc6163b65845.png
115cb6f6e355d4a993bc77e78df4415a.png
5ee1fcc3b743d6031e2de1d339db4465.png
873c256d14a8fc0d13b45c83467b045e.png
c8735c3a359f6b381d25ae0a198e6d84.png

通过对数运算的训练,同学们可以加强对对数概念与其运算的理解,解题过程一定必须注意概念的理解透彻,强化书写过程。

对数方程

9a6cf9f5bb465657a447e7950f1d7594.png
b8fd3f4739aafa2969f7cc5ea98a5b96.png
58e37330a6dba34f25860b1326475b71.png

我们可以看到,对数方程的解答方式有二种情况,其实大同小异,但第二种方法更加符合对数概念的理解与分析,强化逆用思维的训练。

对数方程训练

b062c97c6dcd151b484c7584ca7430e1.png
27ffbe1fd3f790284b74bc103731c283.png
158b77d79d146ffd3a1a6cb20b66c25c.png
d71f81d341a6e0beba53d4eaee24240d.png

通过对数方程的训练,我们更能强化对数运算的内容。

对数与解析式

26e68878df7cf0408f18a8213a2de98f.png
4c5066ce355a2c78eab0e9855dfdfc41.png

我们把对数运算放在了基础的解析式上,这样同学能学会开始如何把对数运算与解析式结合,也为后续的对数函数认知,提供了起点。

以上为高中数学题型分析:对数运算整节内容。

我们已经整理二套成熟的题型训练内容提供同学们进行训练,也欢迎同学们微信订购。

99c149c55e939c05cc0904b40f52786d.png
42bce95c9e78464e400c24c92419dd23.png
bf11dd644101708e2dc8664dbdfcc522.png

名称:高中数学初等函数题型分析。

页数:250页。

题量:802道。

销售方式:彩色纸质版邮寄。

价格:120元微信支付,包邮。

目录:总共22种题型

高中数学题型分析:乘方运算、整式乘除

高中数学题型分析:指数运算

高中数学题型分析:对数运算

高中数学题型分析:对数换底公式运算

高中数学题型分析:一次函数简单回顾

高中数学题型分析:二次函数简单回顾

高中数学题型分析:指数函数与对数函数图象

高中数学题型分析:一次函数与指对数函数定点

高中数学题型分析:指数函数与对数函数单调性

高中数学题型分析:指数函数与对数函数值域

高中数学题型分析:指对函数的大小比较

高中数学题型分析:反函数概念

高中数学题型分析:函数的解析式

高中数学题型分析:抽象函数的定义域

高中数学题型分析:函数奇偶性

高中数学题型分析:抽象函数的单调性和奇偶性

高中数学题型分析:幂函数

高中数学题型分析:函数的零点

高中数学题型分析:指数函数复合题型

高中数学题型分析:对数函数复合题型

高中数学题型分析:分段函数

高中数学题型分析:函数的对称性

70505ebc4d9ccf26a1d1a4b9ec21b0c8.png
def55d5cfe99141e2db8b44a52d6412e.png
055edf13a9b90c0c22b3e9a4a90d7223.png

名称:初高中数学衔接题型分析。

页数:226页。

题量:953道。

销售方式:彩色纸质版邮寄。

价格:120元微信支付,包邮。

目录:总共25种题型

初中数学题型分析:一元一次方程

初中数学题型分析:二元一次方程

初中数学题型分析:一元二次方程概念

初中数学题型分析:一元二次方程配方法

初中数学题型分析:一元二次方程开平方法求根

初中数学题型分析:一元二次方程判别式

初中数学题型分析:一元二次方程求根公式

初中数学题型分析:一元二次方程因式分解

初中数学题型分析:一元二次方程韦达定理

初中数学题型分析:分式方程

初中数学题型分析:不等式性质

初中数学题型分析:一元一次不等式

高中数学题型分析:集合的含义与表示

高中数学题型分析:区间理解

高中数学题型分析:集合的基本关系

高中数学题型分析:一元二次不等式

高中数学题型分析:集合的交集运算

高中数学题型分析:集合的并集运算

高中数学题型分析:集合的补集运算

高中数学题型分析:函数定义图象理解

高中数学题型分析:函数的定义域基础概念

高中数学题型分析:函数简单解析式分析

高中数学题型分析:函数的单调性证明

高中数学题型分析:函数的简单值域分析

高中数学题型分析:函数的奇偶性证明

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值