两边同时取对数求复合函数_取对数求导法的例题 取对数求导法

本文介绍了对数求导法在求复合函数导数中的应用,详细阐述了如何通过取对数简化求导过程。内容包括自然对数的基本性质、对数求导的基本公式,以及在不同复合函数下的求导步骤,帮助读者理解并掌握对数求导法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先 自然对数 就是对e求对数 即ln 对数运算有几个规律 ln(x*y)=lnx lny ln(x/y)=lnx-lny ln(x^y)=y*lnx 这样一来 你应该就明白了吧 lny=ln{[(x^2)/(x^2-1)]*[(x 2)/(x-2)^2]^(1/3)} =ln(x^2)-ln(x^2-1) ln(x 2)^(1/3)-ln(x-2)^2^(1/3) =2lnx - ...

什么是对数求导法? 作为一种求函数导数的方法,对数求导法应用相当广泛。一些常用函数(比如幂函数)的导函数公式可以用它来推导出来。 对于要求导的函数,如果直接运用定义不方便推出其导数,可以对其两边取对数(一般取自然对数),注意对y作...

cbb6008a55cec74f56be72579e8f8969.png

y是关于x的函数lny相当于复函数,求导则为(lny)'乘y'=(lnx)',开出来就是了。 主要是lny是关于y的函数,y是关于x的函数,理解就好了。

是这样的: “两边分别求导”这句话省略了两个字,应该是“两边分别对x求导”. 如果:lny对y求导,当然是1/y,但是,现在是对x求导,这里由于y是x的函数,所以应用复合函数的求导法则,先求出lny对y的导数1/y,然后乘以y对x的导数y',即lny对x的导数...

b5d0778bbe93016eea193e3c568f82f1.png

(ln

x

)'=1/x 这是基本公式, 推导如下 (lnx)'=1/x [ln(-x)]'=1/(-x)·(-x)' =1/x ∴ (ln

x

)'=1/x

取了对数之后,左右两边都变成了新的复合函数,如左边变成 u = lny, y = lnx 这样的复合关系。 求导时,自然从最外层的函数关系求导,得到 1/y. 因为是对x求导,y仍然是x的函数,所以还得继续再导一次,得y'。综合起来就是相乘,即:(1/y)*y'。 ...

2068701e0156d02ac8c268fd8e47afe6.png

对数求导公式为 (Inx)' = 1/x(ln为自然对数) (logax)' =x^(-1) /lna(a>0且a不等于1) 你贴出来的题目不是对数求导。 原式=1/2(xsinx(1 e^x))^(-1/2) * ((sinx cosx)(1 e^x) e^x(xsinx)) 打字关系,根号只能用指数^符号表达。 复合函数的求导意...

已经提醒用对数求导法:取对数 lny = sinx*lnx, 求导,得 y'/y = cosx*lnx sinx/x, 故 y' = y(cosx*lnx sinx/x) = ……。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值