r矢量球坐标系旋度_第三章 曲线积分和旋度(三)

本文深入探讨了在柱坐标系和球坐标系下矢量场的旋度,通过具体例子阐述旋度的含义及其在流体运动中的应用。旋度与曲线积分的关系揭示了其在描述旋转特性中的重要性,同时提供了环量定律的微分形式,有助于判断矢量函数是否表示静电场。
摘要由CSDN通过智能技术生成

7f100b1f8f545a09233ba9aa30fdaafb.png
If you want to live a happy life, tie it to a goal, not to people or things.
——Albert Einstein

五、柱坐标系和球坐标系下的旋度

为了得到在其他坐标系下的

的表达式,我们采用和笛卡尔坐标系下相同的处理方法,仅仅是修改路径的形状。作为一个案例,我们使用图III-15(a)中所示的路径,来寻找柱坐标系下
的z方向分量。我们同样假设路径的方向为俯视图中逆时针的方向,利用右手定则可以判断该路径的法方向是z轴正方向。

cb3e7c28dec02a1fa6fd3f40aabfb49c.png

2bb020c6ee67349b4c7e1511bc512873.png

图III-15(b)表示的是俯视图中的路径,该路径由四段组成,路径的中心点为

。对于标记为1的路径,
的曲线积分为

沿着路径3的曲线积分为

由于路径围成的面积为

,因此

趋于零时,上式的极限为

然后我们再看另外两段的曲线积分。沿着路径2,我们得到

沿着路径4,我们得到

因此

随着这个面积逐渐趋向于点

时,该极限等于
。综上

寻找

分量和
分量的路径,如图III-15(c)和(d)所示。

fd12ab45ae67635a17644efe6b233fb2.png

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值