预备知识 旋度
球坐标系中标量函数 $u(r, \theta, \phi)$ 和矢量函数 $ \boldsymbol{\mathbf{v}} (r, \theta, \phi)$ 的梯度,散度,旋度和拉普拉斯算符的公式如下.其中 $r$ 是极径,$\theta $ 是极角,$\phi $ 是方位角.
梯度算符
\begin{equation}
\boldsymbol\nabla u = \frac{\partial u}{\partial r} \hat{\boldsymbol{\mathbf{r}}} + \frac{1}{r} \frac{\partial u}{\partial \theta} \hat{\boldsymbol{\mathbf{\theta}}} + \frac{1}{r\sin \theta } \frac{\partial u}{\partial \phi} \hat{\boldsymbol{\mathbf{\phi}}}
\end{equation}
散度算符
\begin{equation}
\boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{v}} = \frac{1}{r^2} \frac{\partial}{\partial{r}} (r^2 v_r) + \frac{1}{r\sin \theta} \frac{\partial}{\partial{\theta}} (\sin\theta v_\theta) + \frac{1}{r\sin \theta} \fr