r矢量球坐标系旋度_球坐标系中的矢量算符

本文介绍了球坐标系下矢量函数的旋度算符,给出了旋度、梯度、散度和拉普拉斯算符的详细公式,并探讨了拉普拉斯算符的分解。此外,还讨论了正交函数系和球坐标系中位置矢量的表达式。
摘要由CSDN通过智能技术生成

&nbsp

&nbsp

&nbsp

&nbsp

&nbsp

&nbsp

&nbsp

预备知识 旋度

球坐标系中标量函数 $u(r, \theta, \phi)$ 和矢量函数 $ \boldsymbol{\mathbf{v}} (r, \theta, \phi)$ 的梯度,散度,旋度和拉普拉斯算符的公式如下.其中 $r$ 是极径,$\theta $ 是极角,$\phi $ 是方位角.

梯度算符

\begin{equation}

\boldsymbol\nabla u = \frac{\partial u}{\partial r} \hat{\boldsymbol{\mathbf{r}}} + \frac{1}{r} \frac{\partial u}{\partial \theta} \hat{\boldsymbol{\mathbf{\theta}}} + \frac{1}{r\sin \theta } \frac{\partial u}{\partial \phi} \hat{\boldsymbol{\mathbf{\phi}}}

\end{equation}

散度算符

\begin{equation}

\boldsymbol{\nabla}\boldsymbol{\cdot} \boldsymbol{\mathbf{v}} = \frac{1}{r^2} \frac{\partial}{\partial{r}} (r^2 v_r) + \frac{1}{r\sin \theta} \frac{\partial}{\partial{\theta}} (\sin\theta v_\theta) + \frac{1}{r\sin \theta} \fr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值