图像融合亮度一致_基于深度学习的低光照图像增强方法总结(2020.09.15更新)...

本文总结了近年来基于深度学习的低光照图像增强方法,包括LLNet、MSR-net、Deep Retinex Decomposition等,这些方法通过光照估计、图像解耦和增强,改善低光照图像的亮度、对比度和噪声问题。文章讨论了各方法的网络结构、训练数据和损失函数,展示了深度学习在低光照图像处理领域的应用和发展。
摘要由CSDN通过智能技术生成

之前在做光照对于高层视觉任务的影响的相关工作,看了不少基于深度学习的低光照增强(low-light enhancement)的文章,于是决定简单梳理一下。

光照估计(illumination estimation)和低光照增强(low-light enhancement)的区别:光照估计是一个专门的底层视觉任务(例如[1,2,6]),它的输出结果可以被用到其它任务中,例如图像增强、图像恢复(处理色差,白平衡)。而低光照增强是针对照明不足的图像存在的低亮度低对比度噪声、伪影等问题进行处理,提升视觉质量。值得一提的是,低光照增强方法有两种常见的模式,一种是直接end-to-end训练,另一种则包含了光照估计。

LLNet: A deep autoencoder approach to natural low-light image enhancement

2017 Pattern Recognition

48b1464ccfc427a38ca002ef41c947b5.png

这篇文章应该是比较早的用深度学习方法完成低光照增强任务的文章,它证明了基于合成数据训练的堆叠稀疏去噪自编码器能够对的低光照有噪声图像进行增强和去噪。模型训练基于图像块(patch),采用sparsity regularized reconstruction loss作为损失函数。

主要贡献如下:

(1)我们提出了一种训练数据生成方法(即伽马校正和添加高斯噪声)来模拟低光环境。

(2)探索了两种类型的网络结构:(a) LLNet,同时学习对比度增强和去噪;(b) S-LLNet,使用两个模块分阶段执行对比度增强和去噪。

(3)在真实拍摄到的低光照图像上进行了实验,证明了用合成数据训练的模型的有效性。

(4)可视化了网络权值,提供了关于学习到的特征的insights。

MSR-net:Low-light Image Enhancement Using Deep Convolutional Network

2017 arXiv

6da0356bbcb0cd9fc8a0d98240a01174.png

这篇文章引入了CNN,它提了一个有趣的观点,传统的multi-scale Retinex(MSR)方法可以看作是有着不同高斯卷积核的前馈卷积神经网络,并进行了详细论证。

接着,仿照MSR的流程,他们提出了MSR-net,直接学习暗图像到亮图像的端到端映射。MSR-net包括三个模块:多尺度对数变换->卷积差分->颜色恢复,上面的结构图画得非常清楚了。

训练数据采用的是用PS调整过的高质量图像和对应的合成低光照图像(随机减少亮度、对比度,伽马校正)。损失函数为带正则项的误差矩阵的F-范数平方,即误差平方和。

Learning a Deep Single Image Contrast Enhancer from Multi-Exposure Images

2018 TIP

fd2c6b9570191420057a74278fdb1ca6.png

这篇文章其实主要关注单图像对比度增强(SICE),针对的是欠曝光和过曝光情形下的低对比度问题。其主要贡献如下:

(1)构建了一个多曝光图像数据集,包括了不同曝光度的低对比度图像

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值