分层softmax_分层注意网络中的输入层代表什么

本文介绍了一个使用双向LSTM和嵌入层的深度学习模型。该模型通过处理分层的文本数据,如评论中的多个句子,来进行分类任务。具体地,模型首先将每个句子编码为固定长度的向量,然后对整个评论进行编码并做出最终预测。
摘要由CSDN通过智能技术生成

embedding_layer=Embedding(len(word_index)+1,EMBEDDING_DIM,weights=[embedding_matrix],input_length=MAX_SENT_LENGTH,trainable=True)

sentence_input = Input(shape=(MAX_SENT_LENGTH,),dtype='int32',name='input1')

embedded_sequences = embedding_layer(sentence_input)

l_lstm = Bidirectional(LSTM(100))(embedded_sequences)

sentEncoder = Model(sentence_input,l_lstm)

review_input = Input(shape=(MAX_SENTS,MAX_SENT_LENGTH),name='input2')

review_encoder = TimeDistributed(sentEncoder)(review_input)

l_lstm_sent = Bidirectional(LSTM(100))(review_encoder)

preds = Dense(len(macronum),activation='softmax')(l_lstm_sent)

model = Model(review_input,preds)

我的问题是:这里的输入层代表什么?我猜测input1代表用嵌入层包装的句子,但是在这种情况下,input2是什么?它是sendEncoder的输出吗?在这种情况下,它应该是浮点数,或者如果它是嵌入单词的另一层,那么它也应该被嵌入层包裹.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值