判断拐点的条件_高等数学入门——综合判断函数极值点与拐点的方法和典型例题...

系列简介:这个系列文章讲解高等数学的基础内容,注重学习方法的培养,对初学者不易理解的问题往往会不惜笔墨加以解释。在内容上,以国内的经典教材”同济版高等数学“为蓝本,并对具体内容作了适当取舍与拓展。例如用ε-δ语言证明函数极限这类高等数学课程不要求掌握的内容,我们不作过多介绍。本系列文章适合作为大一新生初学高等数学时的课堂同步辅导,也可作为高等数学期末复习以及考研第一轮复习时的参考资料。文章中的例题大多为扎实基础的常规性题目和帮助加深理解的概念辨析题,并适当选取了一些考研数学试题。所选题目难度各异,对于一些难度较大或对理解所学知识有帮助的“经典好题”,我们会详细讲解。阅读更多“高等数学入门”系列文章,欢迎关注数学若只如初见

0a6d56bed6c932ea4c61dad1ee7c3a89.png

1ece07fa0142c1f4e90c1e3b7f4c49e8.png

函数极值点和拐点的判断是高等数学课程的重要考点之一,本节我们先来总结利用一、二阶导数判断极值点和拐点的常用方法,再介绍一些判断抽象函数极值点和拐点的典型例题,请读者先复习相关的基础知识,例如极值的必要条件。(由于公式较多,故正文采用图片形式给出。 )一、概述。

e449ff4d7e62a601e65d89b0346e59a7.png

关于拐点的必要条件和充分条件的介绍见下文:

高等数学入门——曲线凹凸性及拐点的基础知识

关于极值的必要条件及第一充分条件的介绍见下文:

高等数学入门——函数极值的定义、必要条件及第一充分条件

关于利用高阶导数判断极值的第二和第三充分条件的介绍见上一节(链接见本文末尾)。

二、函数的一、二阶导数与极值点、拐点关系的常见情形总结。

6276e15f39a90fd2a1476f54b7a3938b.png

三、两种简单情形。

a4ac38b7ee4940c5e9bc1e050f692095.png

四、函数的一、二阶导数都等于0的情形。

c5a4e6a3863e628846d500ad72858d59.png

五、利用导函数图像判断极值点的典型例题。

210a61f66f75774112eb9728f79c1bd0.png

六、例1的解答与评注。(再次强调,不可导的点也可能是极值点!)

a3d044b91ef970de47d8919f8085ff69.png

七、综合判断抽象函数极值点与拐点的典型例题(这两个题目的选项完全相同)。

d53a9e69b299f07b604d42dd1c05d9bd.png

八、例2的解答与评注。

20d508b14540584d5be9b3f5e989ea6f.png

九、例3的解答与评注。

eb136b321a16e78ce60cc62ef764f8d1.png

上一篇:高等数学入门——利用高阶导数判断函数极值的方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值