系列简介:这个系列文章讲解高等数学的基础内容,注重学习方法的培养,对初学者不易理解的问题往往会不惜笔墨加以解释。在内容上,以国内的经典教材”同济版高等数学“为蓝本,并对具体内容作了适当取舍与拓展。例如用ε-δ语言证明函数极限这类高等数学课程不要求掌握的内容,我们不作过多介绍。本系列文章适合作为大一新生初学高等数学时的课堂同步辅导,也可作为高等数学期末复习以及考研第一轮复习时的参考资料。文章中的例题大多为扎实基础的常规性题目和帮助加深理解的概念辨析题,并适当选取了一些考研数学试题。所选题目难度各异,对于一些难度较大或对理解所学知识有帮助的“经典好题”,我们会详细讲解。阅读更多“高等数学入门”系列文章,欢迎关注数学若只如初见!

关于拐点的必要条件和充分条件的介绍见下文:
高等数学入门——曲线凹凸性及拐点的基础知识
关于极值的必要条件及第一充分条件的介绍见下文:
高等数学入门——函数极值的定义、必要条件及第一充分条件
关于利用高阶导数判断极值的第二和第三充分条件的介绍见上一节(链接见本文末尾)。
二、函数的一、二阶导数与极值点、拐点关系的常见情形总结。
三、两种简单情形。
四、函数的一、二阶导数都等于0的情形。
五、利用导函数图像判断极值点的典型例题。
六、例1的解答与评注。(再次强调,不可导的点也可能是极值点!)
七、综合判断抽象函数极值点与拐点的典型例题(这两个题目的选项完全相同)。
八、例2的解答与评注。
九、例3的解答与评注。
上一篇:高等数学入门——利用高阶导数判断函数极值的方法