反需求函数和边际收益_如何通俗的解释边际成本和边际收益?

我写过一篇关于边际效益递减的文章,文章里面通俗解释了这个问题,希望能对你有所帮助。

首先边际效用和边际效益是一个意思,翻译不一样而已,英文名叫Marginal Benefit。举个例子来说明一下什么是边际效益。先说一下边际效益递减规律。下面是个考试的例子:

如上表所示,假设我们参加一个考试,如果我们什么都不复习直接去裸考,那么基本上你会得零分,看来这个考试都是主观题哈,靠瞎蒙没戏;如果你复习一天,你的预期成绩是36分;如果你复习两天,那么你的预期成绩是64分;如果你复习3天,那么你的预期成绩是84分;如果你复习4天那预期成绩是96分,复习5天你可以拿100分。这个时候我们就能算出我们每天的边际效益分别是第一天36分,第二天28分,第三四五天分别是30、12、4分。也就是说你复习第一天可以提分36分,第二天可以提分28分,后面三天可以分别提分20,12,4分。这个时候我们就可以看到边际效益随着我们连续投入是程递减趋势的。

我们画成更直观的图表形式就是这样的。可以更清晰地看到随着我们复习天数的增加考试的提分效果。接着我们把边际效益也图表化。这儿就更直观的看到边际效益递减这个规律了,因为这个线是往下值是递减的:

我们结合这两个图其实可以看出,第二幅图其实就是第一幅图的斜率表示,因为我们边际效益说的就是增量的多少,这个如果学过微积分的同学应该有点熟悉就是类似微积分里面的求导。

我们假设参加这个考试有奖金,一分奖100块,而你的时间成本假设是一天2000元,这个时候我们要去评估到底要学习多少天才划算这个事情,这个时候是不是我们就直接看边际效益就可以了?我们就可以比较清晰的看到,我们第三天的复习边际效益是20分恰好奖金2000元等于我们的时间成本,这个时候是不是就是我们收益最大化的时候? 如果我们继续去复习是不是就划不来了?因为后面你复习一天成本是两千但是收益只有12分也就是1200元,你就亏了吧,这样就不划算了。这个结论说的就是:当边际效益等于边际成本的时候,这个时候我们的总利润最大。(原创需注明来源并得到作者授权方可商业引用。)

该文章参考了这篇文章:6.1 The Logic of Maximizing Behavior​open.lib.umn.edu

关注作者微信公众号“项目管理漫笔”以及时获取作者的后续更新文章:

推荐阅读作者更多的文章(直接点击下面的标题):

<think>好的,用户问的是“maxIterTimes是什么意思?”,看起来他们是在使用某种算法或优化过程中遇到了这个参数,需要了解它的含义作用。首先,我需要确认这个参数通常出现在什么上下文中。maxIterTimes,也就是最大迭代次数,常见于优化算法、机器学习训练、数值计算或者迭代求解问题中。 接下来,用户可能是在调试代码或者配置某个模型时遇到了这个参数,不确定如何设置,或者遇到了算法提前终止的问题,想知道是否需要调整这个值。需要解释清楚这个参数的作用:控制算法运行的最大迭代次数,防止无限循环,同时影响计算效率结果精度。 然后要考虑用户的背景。他们可能有一定的技术基础,但不熟悉具体术语。需要避免使用过于专业的术语,用通俗易懂的语言解释,并结合实际例子说明不同场景下的设置建议。例如,在梯度下降中,设置过小可能导致未收敛,设置过大会浪费资源。 还要注意用户可能的深层需求,比如如何选择合适的maxIterTimes值,或者这个参数其他参数(如收敛阈值)的关系。需要给出具体的设置策略,比如根据问题复杂度调整,结合收敛条件,或者监控训练过程。 另外,要提醒用户注意事项,比如不能单独依赖这个参数,需配合其他停止条件,资源限制的影响,以及不同算法中的差异。例如,遗传算法梯度下降中的maxIterTimes可能有不同的影响。 最后,总结使用原则,帮助用户快速应用,并鼓励他们根据具体情况进行调整。可能需要检查是否有相关示例或代码片段,但用户没有提供,所以保持回答的通用性。</think>在算法或优化问题中,**`maxIterTimes`**(Maximum Iteration Times,最大迭代次数)是一个控制计算过程的关键参数。以下是详细解释: --- ### **一、基本定义** `maxIterTimes` 表示**算法允许运行的最大迭代次数**。当达到该数值时,无论是否满足收敛条件,算法都会强制终止。例如: - 梯度下降法中,每次更新权重算作一次迭代 - 遗传算法中,每一轮种群进化算作一次迭代 --- ### **二、核心作用** 1. **防止无限循环** 当收敛条件难以满足时(如目标函数震荡不收敛),强制终止计算。 2. **控制计算成本** 避免因迭代过多导致时间/资源消耗过高,尤其在资源受限场景(如嵌入式系统)中至关重要。 3. **平衡精度效率** 迭代次数越多,结果可能越精确,但边际效益会递减。需在精度效率间权衡。 --- ### **三、典型应用场景** | 场景 | 作用说明 | 示例值范围 | |---------------------|--------------------------|----------------| | 梯度下降优化 | 控制参数更新次数 | 1000-10,000 | | K-Means聚类 | 限制中心点重定位次数 | 100-300 | | 神经网络训练 | 限制epoch数量(特殊场景) | 按数据量动态调整| | 数值模拟 | 控制物理过程模拟步数 | 10^4-10^6 | --- ### **四、设置策略** 1. **根据问题复杂度调整** - 简单凸优化问题:`100-500` - 非凸高维问题:`5000+` 2. **结合收敛条件** 通常收敛阈值(如`tol=1e-5`)配合使用: $$终止条件 = \begin{cases} \text{达到收敛阈值} & \text{(优先)}\\ \text{达到 maxIterTimes} & \text{(保底)} \end{cases}$$ 3. **资源推法** 根据单次迭代耗时可用总时间计算: $$maxIterTimes = \frac{\text{允许总时间}}{\text{单次迭代时间}}$$ 4. **动态监控** 观察损失曲线,若连续多轮下降不明显,可提前终止(早停策略)。 --- ### **五、注意事项** 1. **不能单独依赖** 若仅设置`maxIterTimes`而不定义收敛条件,可能得到未充分优化的结果。 2. **学习率的关系** 在优化算法中,较大的学习率可能需要更小的`maxIterTimes`(收敛更快但可能震荡)。 3. **算法差异性** - 遗传算法:迭代次数影响种群进化深度 - 牛顿法:通常需要较少迭代次数 4. **硬件限制** GPU/TPU加速时需考虑显存迭代次数的关系。 --- ### **六、代码示例(伪代码)** ```python max_iter = 1000 # 设置最大迭代次数 tol = 1e-6 # 收敛阈值 for i in range(max_iter): # 执行单次迭代计算 loss = update_parameters() # 检查收敛条件 if abs(loss_prev - loss) < tol: break ``` --- ### **七、调试建议** 1. **初始值选择** 从默认值(如1000)开始,观察迭代终止原因: - 如果因达到`maxIterTimes`终止 → 增大该值或检查收敛条件 - 如果提前收敛 → 适当减小该值以节省资源 2. **可视化监控** 绘制损失/精度随迭代次数的变化曲线,观察拐点位置。 通过合理设置`maxIterTimes`,可以在保证结果质量的同时有效控制计算成本。建议结合具体算法文档实际测试进行调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值