处理效应模型stata实例_『Stata』政策处理效应PSM模型基本命令汇总

本文详细介绍了如何在Stata中运用处理效应模型(PSM)进行数据分析,包括一元和多元回归、倾向得分匹配、各种匹配方法(如一对一、K近邻、卡尺匹配等)以及匹配效果的检验。通过实例演示了PSM的基本命令,帮助读者掌握政策评估中的数据分析技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

use ,文件名.dta,clear

ssc install pamatch2,replace

一、首先做一元回归

reg 结果变量 处理变量,r

二、直接引入协变量,再做多元回归

reg 结果变量 处理变量 协变量1 协变量2 协变量3……,r

三、接下来进行倾向得分匹配

1.将数据随机排序

set seed 10101

gen ranorder = runiform()

sort ranorder

2.一对一匹配,又放回匹配,允许并列

Psmatch2 处理变量 协变量1 协变量2 …,outcome(结果变量) n(1) ate ties logit common

解释:n()表示一对几匹配

ate 表示同时汇报ATE ATU ATT。如果默认表示仅汇报ATT

ties 表示并列个体

logit表示对数单位模型

common表示仅对共同取值范围内个体进行匹配。如果默认表示对所有个体进匹配。

3.使用引导程序显示全部处理效应结果

Set seed 10101

Bootstrap r(att) r(atu) r(ate),reps(500):psmatch2处理变量 协变量1 协变量2 …,outcome(结果变量) n(1) ate ties logit common

4.使用命令pstest考察匹配结果是否较好地平衡了数据

Quietly psmatch2 处理变量 协变量1 协变量2 …,outcome(结果变量) n(1) ate ties Logit common

pstest协变量1 协变量2 …,both graph

5.用条

Stata是一种常用的统计分析软件,而PSM(Propensity Score Matching)又是一种常用的处理选择偏差的分析方法。下面是一个简单的Stata PSM代码的实例和解释。 首先,我们需要加载StataPSM库: ```stata ssc install psmatch2 ``` 接下来,我们需要准备数据,包括处理组和对照组的指标。假设我们有以下数据集: ```stata use mydata.dta, clear ``` 然后,我们可以使用`psmatch2`命令来进行PSM分析。以下是一个示例代码: ```stata psmatch2 treated_var, outcome(out_var) pscore(pscore_var) model(logit) neighbor(1) exact caliper(0.05) common ``` 在这个例子中,`treated_var`是一个二进制变量,指示个体是否接受了处理。`out_var`是我们感兴趣的结果变量。`pscore_var`是倾向分数,通常用logistic回归模型预测得到,用于衡量个体接受处理的概率。`model(logit)`指定了使用logistic回归模型来预测倾向分数。`neighbor(1)`指定匹配的最近邻个体个数为1。`exact`表示精确匹配。`caliper(0.05)`表示只接受倾向分数在0.05范围内的匹配。 运行完上述代码后,Stata会生成一些结果,其中包括匹配的样本数、倾向分数的平均值、标准差以及匹配前后结果的比较等。你可以根据需要获取匹配后的数据集来进一步分析: ```stata gen mate_id = _n keep if _treated == 1 | mate_id == _n ``` 以上就是一个简单的Stata PSM代码的示例。需要根据具体的研究问题和数据来进行相应的调整和解释。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值