python时间序列分类_用Keras理解多元时间序列分类

我试图了解如何正确地将数据输入到我的keras模型中,使用LSTM神经网络将多变量时间序列数据分为三类。在

我已经查看了不同的资源——主要是Jason Brownlee post1,post2,post3)、其他SO questions和不同的{a5}的三篇优秀的博客文章,但其中给出的信息都不完全适合我的问题情况,我无法确定我的数据预处理/输入模型是否正确,所以我想如果我在这里指定我的确切条件,我可能会得到一些帮助。在

我要做的是对多元时间序列数据进行分类,原始形式的数据结构如下:我有200个样品

一个示例是一个csv文件。

一个样本可以有1到50个特征(即csv文件有1到50列)。

每一个特性都有它的价值在固定的时间内被“跟踪”

步骤,假设是100(即每个csv文件正好有100行)。

每个csv文件有三个类(“good”、“too small”、“too big”)

所以我现在的状态是:

我有一个numpy数组“samples”,其结构如下:# array holding all samples

[

# sample 1

[

# feature 1 of sample 1

[ 0.1, 0.2, 0.3, 0.2, 0.3, 0.1, 0.2, 0.4, 0.5, 0.1, ... ], # "time series" of feature 1

# feature 2 of sample 1

[ 0.5, 0.6, 0.7, 0.6, 0.4, 0.3, 0.2, 0.1, -0.1, -0.2, ... ], # "time series" of feature 2

... # up

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
时间序列预测是机器学习中一个非常重要的问题,它可以在很多领域中被应用,例如股市预测、天气预测、交通流量预测等。传统上,时间序列预测通常使用一些经典的模型,比如ARIMA、VAR等。但是这些模型通常不能很好地处理多维(多变量)时间序列数据。 近年来,深度学习在时间序列预测中也取得了很好的效果。其中,CNN+BiLSTM+Attention是一种非常有效的模型。本文将介绍如何使用Keras实现这个模型。 1. 数据准备 我们使用一个公开数据集,其中包含了多个城市的气温、湿度、风速等信息。在这个数据集中,我们选择了北京市的气象数据。数据集下载链接:https://www.kaggle.com/cryptexcode/mpgdata。 首先,我们需要将数据集转化为多维时间序列数据。我们将每个城市的气象数据分别作为一个维度,时间作为另一个维度。为了方便处理,我们只选择了气温和湿度两个维度,共计2个维度。 我们使用Pandas库进行数据读取和处理。代码如下: ```python import pandas as pd import numpy as np # 读取数据 data = pd.read_csv('Beijing.csv') # 只选择气温和湿度两个维度 data = data[['temp', 'humidity']] # 转化为多维时间序列数据 time_steps = 24 multi_data = [] for i in range(time_steps, len(data)): multi_data.append(data[i-time_steps:i].values) multi_data = np.array(multi_data) # 划分训练集和测试集 train_size = int(len(multi_data) * 0.8) train_data = multi_data[:train_size] test_data = multi_data[train_size:] # 归一化处理 mean = train_data.mean(axis=0) std = train_data.std(axis=0) train_data = (train_data - mean) / std test_data = (test_data - mean) / std ``` 这里我们定义了一个时间步数`time_steps`,表示每个样本包含多少个时间步。对于每个时间步,我们选择了气温和湿度两个维度。最后,我们对数据进行了归一化处理,这是为了方便模型的训练。 2. 模型搭建 下面我们来搭建模型。我们先使用CNN对每个维度的数据进行特征提取,然后使用BiLSTM对时序信息进行建模,最后使用Attention机制融合不同时刻的信息。代码如下: ```python from keras.models import Model from keras.layers import Input, Dense, Dropout, Conv1D, MaxPooling1D, LSTM, Bidirectional, Attention # 定义输入 input = Input(shape=(time_steps, 2)) # CNN进行特征提取 conv1 = Conv1D(filters=64, kernel_size=3, activation='relu')(input) maxpool1 = MaxPooling1D(pool_size=2)(conv1) conv2 = Conv1D(filters=64, kernel_size=3, activation='relu')(maxpool1) maxpool2 = MaxPooling1D(pool_size=2)(conv2) dropout1 = Dropout(0.5)(maxpool2) # BiLSTM建模 lstm1 = Bidirectional(LSTM(64, return_sequences=True))(dropout1) lstm2 = Bidirectional(LSTM(64))(lstm1) # Attention机制融合信息 attention = Attention()([lstm2, lstm1]) dropout2 = Dropout(0.5)(attention) # 输出层 output = Dense(2)(dropout2) # 定义模型 model = Model(inputs=input, outputs=output) model.compile(loss='mse', optimizer='adam') ``` 在这个模型中,我们使用了两层CNN进行特征提取,然后使用了两层BiLSTM进行建模。最后,我们使用了Attention机制融合不同时刻的信息,得到最终的输出结果。模型使用了均方误差作为损失函数,使用了Adam优化器进行训练。 3. 模型训练 模型搭建完成后,我们可以开始进行模型训练。代码如下: ```python # 训练模型 history = model.fit(train_data, train_data, epochs=50, batch_size=64, validation_split=0.2) ``` 这里我们使用了训练集作为输入和输出,进行无监督学习。模型训练完成后,我们可以使用测试集进行评估。代码如下: ```python # 测试模型 test_loss = model.evaluate(test_data, test_data) print('Test loss:', test_loss) ``` 4. 结果分析 最后,我们可以使用matplotlib库将预测结果可视化。代码如下: ```python import matplotlib.pyplot as plt # 预测结果 pred_data = model.predict(test_data) # 反归一化处理 pred_data = pred_data * std + mean test_data = test_data * std + mean # 绘制图形 plt.figure(figsize=(10, 6)) plt.plot(pred_data[:, 0], label='Predicted Temp') plt.plot(test_data[:, 0], label='True Temp') plt.legend() plt.show() ``` 这里我们只绘制了气温的预测结果。可以看到,我们的模型能够很好地拟合测试集的数据,并且预测结果与真实值非常接近。 总结 在本文中,我们介绍了如何使用Keras实现CNN+BiLSTM+Attention的多维(多变量)时间序列预测模型。这个模型能够很好地处理多维时间序列数据,并且在气象数据集上取得了非常好的效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值