三维匹配_基于图像的三维模型重建 ——双视角SFM

一、三角量测(Triangulation)

已知相机参数和匹配点恢复三维点的坐标

8ed751f06e6a6264ec33a158c3485da8.png
  • i 相机投影矩阵:
  • 三维点点坐标:
  • 在第 i 个视角中投影的图像坐标为:
  • 根据投影方程可以得到:
  • 上述等式两侧同时叉乘 xi:
  • 即:注意 第3个方程与前两个方程线性相关
  • 1个观察点提提供2个约束, 有 个自由度,至少2对点

二、3D-2D: PnP问题 (已知三维点和对应二维点求解相机内外参数)

7ba2022614fbd2c67a55ae03ac1bd6aa.png
  1. 直接线性变换法

0647ce8c4aaa20fb0b60199d50d50d14.png

71fc85a666bade91d691ec386d735ab8.png

2. 其他常用方法

  • P3P法:需要4对不共面的点 求出2D点在当前相机坐标系中的3D点,然后 进行3D-3D的姿态求解
  • https://www.cnblogs.com/mafuqiang/p/8302663.html
  • Complete Solution Classification for the Perspective-Three-Point Problem
  • A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation
  • ePnP法:需要(>=4不共面或者3对共面) 点进行求解
  • https://www.cnblogs.com/jian-li/p/5689122.html
  • EPnP: Efficient Perspective-n-Point Camera Pose Estimation

三、捆绑调整Bundle Adjustment

  1. 问题阐述:同时对三维点位置和相机参数进行非线性优化

4e2806c2f82c20028e022c8cdb6143fb.png

2. 无约束非线性最小优化问题:

  • 优化上述问题的最优解通常是指它的局部最优解,因此需要一个较好的初始值

3. 最速下降法--假设函数一阶可微

  • 假设
    处可微,则在此处有泰勒展开式
  • 时可保证g 的值是在下降;
  • 时,可达到最快的下降速度(略去高阶不计)

d3f8b6a295520d54f13c11452007d4b4.png

4. 牛顿法--假设函数二阶可微

  • 假设
    处二阶可微,且假定二阶导数
    总是正定的, 则它在
    处,以
    的二阶近似函数
  • 的极小值点作为下一次迭代点
  • 对上式求梯度并令其等于0,可以得到

0643ff1a0a3e5d0a29f21012ae2bc352.png
  • 特性:
    • 1)速度快 最速下降法是局部平面拟合,牛顿法是局部二次曲面拟合
    • 2)计算量大 需要计算和保存二阶Hessian矩阵的逆矩阵
    • 3)要求初始点离最优点较近 否则无法保证收敛,甚至无法保证下降性

5. Levenberg-Marquardt法-原理与优势

  • 原理: 是一种“信赖阈”的方法,当收敛速度较快时,增大信赖域,使算法趋向于牛顿法;当收敛速度较慢时,减小信赖域,使算法趋向于最速梯度法
  • 优势:
    • 速度快,只用到一阶矩阵
    • 可以在距离初始值较远处得到最优解
  • 实现

901ed401de559b1a63c20135167defb5.png
  • 算法流程

9f8651bf320441995306fc11329ff654.png
  • 增量规方程的求解

7a2e4141334b242a0a327ae53b483f24.png
  • 正规方程的求解

61fdd4a3757ef8e99bf621543d6c0ee1.png
  • 雅阁比矩阵的计算

f135900286b20da32d9e49d414989bb4.png

四、捆绑调整的几种形式

1.同时优化相机和三维点

4d3a187e23c656ec93007f32a106eaeb.png

f0e031a8e6de97dfe17ee488efc44ee1.png

2. 优化相机:固定三维点坐标,优化相机参数

0ceb089e02d347b7b6ba3bdc8b8a34d9.png

3.只优化三维点:固定相机参数

aeffb3741a3c791ff6abb68df51e55cc.png

4.单目相机——内参数共享

5d681a998227ea9c0ecaa428ca63c192.png

23f9a78ae50c18d63d7dbd55065a4b13.png

950f4c7e978a9d8781b30e5959692ebb.png

五、运动恢复结构SFM

  • 定义:通过相机运动同时恢复相机参数和场景结构

fc0d5f767b4b17d3ac020d9823d2e40b.png

87941bca3ac22f0142299d3ac2f869e2.png
  • 特征检测与匹配

597f864a1cf391a0cd0d01beb26642b6.png
  • 双视点几何

a91c88addfb843bc90f78f1a12846d3e.png
  • 网络连接图

c97352a9ba9e2e96327addc9f79c46cc.png

e7f4e019ab497c73e0974632387f0ea0.png
  • Tracks

82a376d0efe87f5ea67afe9c21dcb829.png

20618cad9ec681159108834023f1311a.png
  • 捆绑调整(BA)

4ac9cc53d4cf28f88ec4c854b41a20e3.png

六、增量运动恢复结构 Incremental SFM

90a4e4ebc35cffb60e32dded1caeff13.png

1.初始相机的选取

1b5f603681ccfdbc6e8faa73a7b6a6cd.png

2.RANSAC三角量测

d507f659cb4ef32ce0e891ecd43181b8.png

3.Tracks滤波

926c41579035203d2e924a46be187f43.png

dae1fb00c84f6f4434f1fd8bfbbf941f.png

4.全局的捆绑调整

fcdc37f401d482be3ed85fc7cb7c8391.png
  • 主要优点
    • 将误差均匀分布在连接图上, 没有误差积累
    • 不需要考虑初始相机选取和 相机添加顺序问题
    • 仅执行一次捆绑调整,重建 效率高
  • 主要缺点:
    • 鲁棒性不足,相机位置求解时对匹配外点敏感
    • 过滤连接图边界,容易造成部分图像丢失

5.重建新的视角

1d9c179d67a635796586afab514c6ba1.png

1)选择新的视角:可见的tracks数目最多

98c1a876c15aedc33a0beeea9a433f9d.png

2)恢复新建相机姿态:找到3D-2D对应关系;用ransac-pnp算法求解相机姿态

b1e9ca897537ed69104ba7935e969e15.png

3)单个相机的捆绑调整:相机姿态的非线性优化

98c1a876c15aedc33a0beeea9a433f9d.png

4)tracks重建:增加视角之后会产生新的tracks(大于两个视角的匹配点)

c06eda07887e47a31704459265008bc6.png

5)tracks滤波:对重建的tracks进行外点去除

0bd2da0c83ad9335df4ad3af27e6a2ef.png

10ee635fe5029417fda422d6969b3d0a.png

6)全局捆绑调整:对场景中所有的相机和三维点进行非线性优化;每重建一个视角运行一次,也可以重建多个视角运行一次

2d5fbb6d5460632f68a48cc22e911a2a.png

1. 增量捆绑调整的优缺点——常用来做算法比较的基准

  • 主要优点:
    • 对特征匹配外点鲁棒
    • 重建精度高
    • 捆绑调整不断优化场景结构
  • 主要缺点:
    • 对初始相机对的选取以及相机添加顺序敏感
    • 大场景产生累计误差导致场景漂移
    • 重复进行捆绑调整,效率低
  • 重建结果:

ded065863a110d878fe766809a8a11d7.png

2.焦距的获取

  • 自标定的方法获取初始值,如 VisualSFM
  • 从可交换图像文件中读取EXIF初始值 如 Bundler

f044dfde62e4b26a3c79c67634083719.png

3.尺度不确定性:需要GPS进行地理标注

21f99fcdffa6bfb976e585da68f190fb.png

4.动态物体:标准的sfm只能重建场景中的动态物体

d276f136b2cf6ab5f567206d3b24a56f.png

5.重复结构

11e7e8ac4b27a7efe28e3f2e9f6e8a13.png

6.非朗伯面:找不到足够的匹配特征点

5f91d508c0eac9e2aa4cad0410f8c31c.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值