为什么剩余数不能相加_刷题册中数量关系剩余问题技巧详解

本文介绍了如何使用数学方法,尤其是孙子定理和同余概念,来解决剩余问题。通过实例解析了不同类型的剩余问题,包括代入法和同余关系式,并给出了具体的应用策略,如‘余同取余’、‘和同加和’、‘差同减差’。此外,还展示了这些方法在实际题目中的应用,如学生分组问题和数量关系的解题过程。
摘要由CSDN通过智能技术生成

【2019江苏A】

53.  一群学生分小组在户外活动,如3人一组还多2人,5人一组还多3人,7人一组还多4人,则该群学生的最少人数是:

A.23  B.53  C.88  D.158

解法一:代入法。从A项开始检验;A项不满足除以7余4,排除;B项满足所有条件,选B

解法二:孙子定理(剩余问题)。若总人数加倍,除以3余4、除以5余6、除以7余8,差同减差,此时的总人数=3×5×7×n+1,最初的总人数最少=(3×5×7+1)/2=53人,选B。

8b22ab26ef493287a87a82da4f4b89c6.png

数量关系之剩余问题解题原理技巧

1.余数

在整数的除法中,只有能整除与不能整除两种情况。当不能整除时,就产生余数。

被除数(a)÷除数(b)=商(c)…余数(d),其中a、c均为整数,b、d为自然数。

其中,余数总是小于除数,即0≦d<b。

2.同余

同余:两个整数a、b,若它们除以整数m所得的余数相等,则称a、b对于m同余。

举例说明:23除以5的余数是3,18除以5的余数也是3,则称23与18对于5同余。

同余的性质:对于同一个除数m,两个数和的余数与余数的和同余,两个数差的余数与余数的差同余,两个数积的余数与余数的积同余。

举例说明:15除以7余数是1,18除以7余数是4。

15+18=33,则33除以7的余数与1+4=5除以7的余数相同。

18-15=3,则3除以7的余数与4-1=3除以7的余数相同。

15×18=270,则270除以7的余数与1x4=4除以7的余数相同。

3.剩余问题

剩余问题主要有以下三种情况:

(1)一个数除以4余2、除以5余2、除以6余2,这个数可表示为什么?

(2)一个数除以4余3、除以5余2、除以6余1,这个数可表示为什么?

(3)一个数除以4余1、除以5余2、除以6余3,这个数可表示为什么?

对于上述三种问题,解题思路是先找出一个满足条件的数,再加上几个除数的最小公倍数的1、2、3、…、n倍,即为所求。

(1)中,余数相同,2满足条件,加上4、5、6的最小公倍数,也满足条件,所以该数表示为(60n+2)。

(2)中,4+3=5+2=6+1=7,余数与除数之和相同,即和同。7满足条件,加上4、5、6的最小公倍数,也满足条件,所以该数表示为(60n+7)。

(3)中,1-4=2-5=3-6=-3,余数与除数之差相同,即差同。-3满足条件,在此基础上加上4、5、6的最小公倍数,也满足条件,所以该数表示为(60n-3)。

所以有余同加余,和同加和,差同减差,最小公倍数做周期。

63d5d86b21fc6ca272a037de1fe9cbb5.png

按照常考的题型,剩余问题可以分为以下几类:

一、代入排除类型

【例1】(江西2009)学生在操场上列队做操,只知人数在90-110之间。如果排成3排则不多不少;排成5排则少2人;排成7排则少4人;则学生人数是多少?( )

A.102

B.98

C.104

D.108

【解析】像这样的题目直接代入选项,看看哪个符合题目所给的条件,哪个就是正确的答案,毫无疑问,选项108满足条件,选择D。

二、余数关系式和恒等式的应用

余数的关系式和恒等式比较简单,因为这一部分的知识点在小学时候就已经学过了,余数基本关系式:被除数÷除数=商…余数(0≦余数<除数),但是在这里需要强调两点:

1、余数是有范围的(0≦余数<除数),这需要引起大家足够的重视,因为这是某些题目的突破口。

2、由关系式转变的余数基本恒等式也需要掌握:被除数=除数×商+余数。

【例2】两个整数相除,商是5,余数是11,被除数、除数、商及余数的和是99,求被除数是多少?

A.12

B.41

C.67

D.71

【解析】余数是11,因此,根据余数的范围(0≦余数<除数),我们能够确定除数>11。除数为整数,所以除数≧12,根据余数的基本恒等式:被除数=除数×商+余数≧12×商+余数=12×5+11=71,因此被除数最小为71,答案选择D选项。

【例3】有四个自然数A、B、C、D,它们的和不超过400,并且A除以B商是5余5,A 除以C商是6余6,A除以D商是7余7。那么,这四个自然数的和是?

A. 216

B. 108

C. 314

D. 348

【解析】利用余数基本恒等式:被除数=除数×商+余数,有A=B×5+5= (B+1)×5。由于A、B均是自然数,于是A可以被5整除,同理,A还可以被6、7整除,因此,A可以表示为5、6、7的公倍数,即210n。由于A、B、C、D的和不超过400,所以A只能等于210,从而可以求出B=41、C=34、D=29,得到A+B+C+D=314,选C。

像上面这两个题目,就是活用这两个知识点来解题。

三、同余问题

这类问题在考试中比较常见,主要是从除数与余数的关系入手,来求得最终答案。通过总结我们得出解决同余问题的核心口诀,如下表所示:

同余问题核心口诀

“最小公倍数作周期,余同取余,和同加和,差同减差”

余同取余:“一个数除以4余1,除以5余1,除以6余1”,这个数是 60n+1

和同加和:“一个数除以4余3,除以5余2,除以6余1”,这个数是 60n+7

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值