单基因gsea_文献学习生信—单基因SYT16分析

本文通过TCGA数据和多种生物信息学方法,揭示了SYT16基因在低级别胶质瘤(LGG)中的重要作用。研究发现,SYT16高表达与肿瘤恶化和较差的生存预后相关,并与免疫细胞浸润程度负相关。GSEA分析揭示了SYT16涉及的关键信号通路,表明其可能作为免疫治疗的新靶点。
摘要由CSDN通过智能技术生成

Pesist, and anything is within your reach.

fa14a746baca3f61deacd8e05f76eb99.png

SYT16是LGG预后标志物与免疫浸润相关

背景:

胶质瘤是致命脑肿瘤。低级别脑肿瘤是胶质瘤中最常见的类型。在低级别胶质瘤中,免疫浸润微环境与总生存期相关。SYT16基因在肿瘤中的作用尚未见到明确报道。我们评估了TCGA中SYT16在LGG中的作用。

方法:

应用GEPIA数据库分析SYT16基因表达情况以及与生存的关系。应用logistics回归分析临床因素与SYT16的表达情况。单因素和多因素COX分析比较临床因素与生存的关系。探究了SYT16与肿瘤免疫的关系。应用GSEA分析SYT16涉及功能。此外应用TIMER数据库探究了SYT16表达与免疫浸润程度的关系。

结果:

单因素logistic回顾分析显示升高的SYT16与肿瘤分级相关。多因素分析显示上调的SYT16表达是独立的预后因子。SYT16表达水平与免疫浸润(B细胞,CD4+ T细胞,巨噬细胞,中性粒细胞,DC细胞)负相关。GSEA分析、GO和KEGG分析确定了重要信号通路。

结论:SYT16是预后标志物与免疫浸润相关。

基因GSEA (Gene Set Enrichment Analysis) 是一种统计方法,用于检测一组基因表达数据中特定预定义基因集(例如通路、功能模块等)是否上调或下调。在R语言中,可以使用`gseaborn`包结合`clusterProfiler`来进行基因GSEA。以下是基本步骤: 1. 安装必要的库: ```R install.packages("gseaborn") install.packages("clusterProfiler") ``` 2. 加载所需的库并导入数据(假设你有一个名为`expression_data.csv`的基因表达矩阵和一个`gene_sets.txt`的基因集文件): ```R library(gseaborn) library(clusterProfiler) # 导入数据 expression <- read.table("expression_data.csv", header=TRUE, row.names="GeneName") gene_sets <- read.table("gene_sets.txt", header=TRUE, colClasses = c("character", "numeric")) ``` 3. 准备数据: - 对于`expression_data.csv`,通常需要先对数据进行归一化处理,如log2转换。 - 创建一个索引列,表示每个基因在哪个组别中上调或下调。 4. 进行基因GSEA: ```R # 使用clusterProfiler中的gseGO()函数 result <- gseGO(expression ~ factor(index_column), geneSetData=gene_sets, ont="BP", method="fisher", permutation=1000) ``` - `expression ~ factor(index_column)`:将基因表达数据和分组信息关联起来。 - `ont="BP"`:指定感兴趣的功能注释类别,比如“biological_process”(生物过程)。 - `method="fisher"`:选择GSEA的统计方法。 - `permutation=1000`:设置随机重排次数以提高结果的稳健性。 5. 可视化结果: ```R plot(result) ``` 这将生成一个条形图或热力图,显示各个基因集在上调或下调列表中的富集情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值