广义线性模型_广义线性模型与逻辑回归

本文深入探讨了线性模型、广义线性模型和逻辑回归的关系,介绍了最小二乘解的概念。针对二分类问题,提出了对数似然损失函数,并通过牛顿法求解逻辑回归模型的最优参数。此外,还展示了如何用Python实现逻辑回归,包括梯度下降、IRLS和牛顿法优化算法,并在多个数据集上进行测试。
摘要由CSDN通过智能技术生成

1ca33340c38be35b25c5cc0010b9720b.png

先做个广告:

零、概述

本文内容包括:线性模型、广义线性模型、逻辑回归、牛顿法以及 IRLS 。前导知识包括:矩阵、向量的计算,多元函数的梯度、赫森矩阵以及二阶泰勒展开,概率论。


一、线性模型

假设样本由

维特征向量
和标量响应
组成。
服从联合分布
。把确定
的前提下
的条件分布记作
。如果假设对于
的随机噪声是加性的,如下式:

则当

本质上由
确定,其所有不确定性来源于
。如果进一步假设
满足高斯分布:

那么这就是加性高斯误差。在这种设定下分布

的条件期望,也是概率密度最大的值就是:

把该条件期望当作

时对
的预测值。至于
则是问题固有的、无法通过模型优化去除的误差。所谓线性模型就是用线性函数来建模

最后一个等号后面的

维向量
维向量
前面加一维常量 1 是为了把截距
纳入向量表达式中。训练集(
)是
个特征向量及其标量响应:
。如果问题是一个回归问题,且选用平方误差作为损失函数:

在训练集上最小化平均损失:

最后一个等号后面的

是所有
组成的
维向量。
矩阵,其第
行是
。损失函数作为
的函数是凸的,存在全局唯一最小点,也就是唯一的驻点。通过求导并置导向量为 0 再解方程可得到:

这就是要寻找的最优参数——线性回归的最小二乘解。当

时对
个训练样本的预测值是:

的列的线性组合,系数向量是
。也就是说
属于
的列空间。并且由于
最优化了平均平方误差,所以
的列空间中与向量
欧氏距离最小的向量,即
列空间上的投影。同时
也是
的一个线性变换,变换矩阵是
。这也是该模型被称为线性模型的一个原因。
的对角线元素的和,即
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值